In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

1.
M.
Wuttig
and
N.
Yamada
,
Nat. Mater.
6
,
824
(
2007
).
2.
H. P.
Wong
,
S.
Raoux
,
S.
Kim
,
J.
Liang
,
J. P.
Reifenberg
,
B.
Rajendran
,
M.
Asheghi
, and
K. E.
Goodson
,
Proc. IEEE
98
,
2201
(
2010
).
3.
D.
Kau
,
S.
Tang
,
I. V.
Karpov
,
R.
Dodge
,
B.
Klehn
,
J.
Kalb
,
J.
Strand
,
A.
Diaz
,
N.
Leung
,
J.
Wu
 et al,
Tech. Dig. -Int. Electron Devices Meet.
2009
,
1
4
.
4.
W.
Czubatyj
and
S. J.
Hudgens
,
Electron. Mater. Lett.
8
,
157
(
2012
).
5.
W. W.
Koelmans
,
A.
Sebastian
,
V. P.
Jonnalagadda
,
D.
Krebs
,
L.
Dellmann
, and
E.
Eleftheriou
,
Nat. Commun.
6
,
8181
(
2015
).
6.
K. W.
Böer
and
S. R.
Ovshinsky
,
J. Appl. Phys.
41
,
2675
2681
(
1970
).
7.
S.
Lee
and
H.
Henisch
,
J. Non-Cryst. Solids
11
,
192
(
1972
).
8.
G.
Vezzoli
,
P. J.
Walsh
, and
L. W.
Doremus
,
J. Non-Cryst. Solids
18
,
333
(
1975
).
9.
D.
Adler
,
M. S.
Shur
,
M.
Silver
, and
S. R.
Ovshinsky
,
J. Appl. Phys.
51
,
3289
(
1980
).
10.
A.
Pirovano
,
A. L.
Lacaita
,
A.
Benvenuti
,
F.
Pellizzer
, and
R.
Bez
,
IEEE Trans. Electron Devices
51
,
452
(
2004
).
11.
A.
Redaelli
,
A.
Pirovano
,
A.
Benvenuti
, and
A. L.
Lacaita
,
J. Appl. Phys.
103
,
111101
(
2008
).
12.
D.
Ielmini
and
Y.
Zhang
,
J. Appl. Phys.
102
,
054517
(
2007
).
13.
D.
Ielmini
,
Phys. Rev. B
78
,
035308
(
2008
).
14.
C.
Jacoboni
,
E.
Piccinini
,
F.
Buscemi
, and
A.
Cappelli
,
Solid-State Electron.
84
,
90
(
2013
).
15.
V. G.
Karpov
,
Y. A.
Kryukov
,
S. D.
Savransky
, and
I. V.
Karpov
,
Appl. Phys. Lett.
90
,
123504
(
2007
).
16.
A.
Sebastian
,
N.
Papandreou
,
A.
Pantazi
,
H.
Pozidis
, and
E.
Eleftheriou
,
J. Appl. Phys.
110
,
084505
(
2011
).
17.
K.
Tsendin
,
Phys. Status Solidi B
246
,
1831
(
2009
).
18.
M.
Le Gallo
,
M.
Kaes
,
A.
Sebastian
, and
D.
Krebs
,
New J. Phys.
17
,
093035
(
2015
).
19.
A.
Sebastian
,
M.
Le Gallo
, and
D.
Krebs
,
Nat. Commun.
5
,
4314
(
2014
).
20.
M.
Breitwisch
,
T.
Nirschl
,
C.
Chen
,
Y.
Zhu
,
M.
Lee
,
M.
Lamorey
,
G.
Burr
,
E.
Joseph
,
A.
Schrott
,
J.
Philipp
 et al,
IEEE Symp. VLSI Technol.
2007
,
100
101
.
21.
See supplementary material at http://dx.doi.org/10.1063/1.4938532 for a detailed description of the finite-element modeling and additional threshold switching simulations.
22.
A.
Athmanathan
,
D.
Krebs
,
A.
Sebastian
,
M. L.
Gallo
,
H.
Pozidis
, and
E.
Eleftheriou
, in
International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
(
2015
).
23.
S. M.
Sadeghipour
,
L.
Pileggi
, and
M.
Asheghi
, in
the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM'06
(
2006
), pp.
660
665
.
24.
J. L. M.
Oosthoek
,
D.
Krebs
,
M.
Salinga
,
D. J.
Gravesteijn
,
G. A. M.
Hurkx
, and
B. J.
Kooi
,
J. Appl. Phys.
112
,
084506
(
2012
).
25.
M.
Rütten
,
M.
Kaes
,
A.
Albert
,
M.
Wuttig
, and
M.
Salinga
,
Sci. Rep.
5
,
17362
(
2015
).
27.
D.
Adler
,
H. K.
Henisch
, and
S. N.
Mott
,
Rev. Mod. Phys.
50
,
209
(
1978
).
28.
M.
Wimmer
and
M.
Salinga
,
New J. Phys.
16
,
113044
(
2014
).
29.
A.
Sebastian
,
D.
Krebs
,
M.
Le Gallo
,
H.
Pozidis
, and
E.
Eleftheriou
, in
IEEE International Reliability Physics Symposium (IRPS)
(
2015
), pp.
MY.5.1
MY.5.6
.
30.
N.
Ciocchini
,
M.
Cassinerio
,
D.
Fugazza
, and
D.
Ielmini
,
IEEE Trans. Electron Devices
59
,
3084
(
2012
).
31.
K. D.
Tsendin
,
J. Optoelectron. Adv. Mater.
9
,
3035
(
2007
).
32.
M. J.
Shu
,
P.
Zalden
,
F.
Chen
,
B.
Weems
,
I.
Chatzakis
,
F.
Xiong
,
R.
Jeyasingh
,
M. C.
Hoffmann
,
E.
Pop
,
H.-S.
Philip Wong
,
M.
Wuttig
, and
A. M.
Lindenberg
,
Appl. Phys. Lett.
104
,
251907
(
2014
).
33.
F.
Buscemi
,
E.
Piccinini
,
A.
Cappelli
,
R.
Brunetti
,
M.
Rudan
, and
C.
Jacoboni
,
Appl. Phys. Lett.
104
,
022101
(
2014
).

Supplementary Material

You do not currently have access to this content.