Zn3N2 has been reported to have high electron mobility even in polycrystalline films. The high mobility in polycrystalline films is a striking feature as compared with group-III nitrides. However, the origins of the high mobility have not been elucidated to date. In this paper, we discuss the reason for high mobility in Zn3N2. We grew epitaxial and polycrystalline films of Zn3N2. Electron effective mass (m*) was determined optically and found to decrease with a decrease in electron density. Using a nonparabolic conduction band model, the m* at the bottom of the conduction band was derived to be (0.08 ± 0.03)m0 (m0 denotes the free electron mass), which is comparable to that in InN. Optically determined intra-grain mobility (μopt) in the polycrystalline films was higher than 110 cm2 V−1 s−1, resulting from the small m*. The Hall mobility (μH) in the polycrystalline films was significantly smaller than μopt, indicating that electron transport is impeded by scattering at the grain boundaries. Nevertheless, μH higher than 70 cm2 V−1 s−1 was achievable owing to the beneficial effect of the high μopt. As for the epitaxial films, we revealed that electron transport is hardly affected by grain boundary scattering and is governed solely by ionized impurity scattering. The findings in this study suggest that Zn3N2 is a high-mobility semiconductor with small effective mass.

1.
H.
Morkoç
,
Nitride Semiconductor Devices: Fundamentals and Applications
(
Wiley-VCH
,
Germany
,
2013
).
2.
A.
Zakutayev
,
C. M.
Caskey
,
A. N.
Fioretti
,
D. S.
Ginley
,
J.
Vidal
,
V.
Stevanovic
,
E.
Tea
, and
S.
Lany
,
J. Phys. Chem. Lett.
5
,
1117
(
2014
).
3.
K.
Matsuzaki
,
T.
Okazaki
,
Y. S.
Lee
,
H.
Hosono
, and
T.
Susaki
,
Appl. Phys. Lett.
105
,
222102
(
2014
).
4.
H.
Amano
,
M.
Kito
,
K.
Hiramatsu
, and
I.
Akasaki
,
Jpn. J. Appl. Phys., Part 2
28
,
L2112
(
1989
).
5.
A.
Punya
,
T. R.
Paudel
, and
W. R. L.
Lambrecht
,
Phys. Status Solidi C
8
,
2492
(
2011
).
6.
N.
Feldberg
,
J. D.
Aldous
,
W. M.
Linhart
,
L. J.
Phillips
,
K.
Durose
,
P. A.
Stampe
,
R. J.
Kennedy
,
D. O.
Scanlon
,
G.
Vardar
,
R. L.
Field
 III
,
T. Y.
Jen
,
R. S.
Goldman
,
T. D.
Veal
, and
S. M.
Durbin
,
Appl. Phys. Lett.
103
,
042109
(
2013
).
7.
L.
Lahourcade
,
N. C.
Coronel
,
K. T.
Delaney
,
S. K.
Shukla
,
N. A.
Spaldin
, and
H. A.
Atwater
,
Adv. Mater.
25
,
2562
(
2013
).
8.
S. Y.
Chen
,
P.
Narang
,
H. A.
Atwater
, and
L. W.
Wang
,
Adv. Mater.
26
,
311
(
2014
).
9.
P.
Narang
,
S. Y.
Chen
,
N. C.
Coronel
,
S.
Gul
,
J.
Yano
,
L. W.
Wang
,
N. S.
Lewis
, and
H. A.
Atwater
,
Adv. Mater.
26
,
1235
(
2014
).
10.
D. E.
Partin
,
D. J.
Williams
, and
M.
O'Keeffe
,
J. Solid State Chem.
132
,
56
(
1997
).
11.
N.
Yamada
,
K.
Watarai
,
T.
Yamaguchi
,
A.
Sato
, and
Y.
Ninomiya
,
Jpn. J. Appl. Phys., Part 1
53
,
05FX01
(
2014
).
12.
X.
Cao
,
A.
Sato
,
Y.
Ninomiya
, and
N.
Yamada
,
J. Phys. Chem. C
119
,
5327
(
2015
).
13.
M.
Futsuhara
,
K.
Yoshioka
, and
O.
Takai
,
Thin Solid Films
322
,
274
(
1998
).
14.
C. G.
Núñez
,
J. L.
Pau
,
M. J.
Hernández
,
M.
Cervera
,
E.
Ruiz
, and
J.
Piqueras
,
Thin Solid Films
520
,
1924
(
2012
).
15.
H.
Sato
,
T.
Minami
,
E.
Yamada
,
M.
Ishii
, and
S.
Takata
,
J. Appl. Phys.
75
,
1405
(
1994
).
16.
M. A.
Qaeed
,
K.
Ibrahim
,
K. M. A.
Saron
,
M. A.
Ahmed
, and
N. K.
Allam
,
ACS Appl. Mater. Interfaces
6
,
9925
(
2014
).
17.
M.
Yoshimoto
,
H.
Yamamoto
,
W.
Huang
,
H.
Harima
,
J.
Saraie
,
A.
Chayahara
, and
Y.
Horino
,
Appl. Phys. Lett.
83
,
3480
(
2003
).
18.
N. K.
Jiang
,
J. L.
Roehl
,
S. V.
Khare
,
D. G.
Georgiev
, and
A. H.
Jayatissa
,
Thin Solid Films
564
,
331
(
2014
).
19.
K.
Kuriyama
,
Y.
Takahashi
, and
F.
Sunohara
,
Phys. Rev. B
48
,
2781
(
1993
).
20.
T. L.
Yang
,
Z. S.
Zhang
,
Y. H.
Li
,
M. S.
Lv
,
S. M.
Song
,
Z. C.
Wu
,
J. C.
Yan
, and
S. H.
Han
,
Appl. Surf. Sci.
255
,
3544
(
2009
).
21.
G. Z.
Xing
,
D. D.
Wang
,
B.
Yao
,
L. F. N.
Ah Qune
,
T.
Yang
,
Q.
He
,
J. H.
Yang
, and
L. L.
Yang
,
J. Appl. Phys.
108
,
083710
(
2010
).
22.
N. K.
Jiang
,
D. G.
Georgiev
,
A. H.
Jayatissa
,
R. W.
Collins
,
J.
Chen
, and
E.
McCullen
,
J. Phys. D: Appl. Phys.
45
,
135101
(
2012
).
23.
R.
Ayouchi
,
C.
Casteleiro
,
L.
Santos
, and
R.
Schwarz
,
Phys. Status Solidi C
7
,
2294
(
2010
).
24.
T.
Suda
and
K.
Kakishita
,
J. Appl. Phys.
99
,
076101
(
2006
).
25.
T.
Oshima
and
S.
Fujita
,
Jpn. J. Appl. Phys., Part 1
45
,
8653
(
2006
).
26.
E.
Maile
and
R. A.
Fischer
,
Chem. Vap. Deposition
11
,
409
(
2005
).
27.
K.
Toyoura
,
H.
Tsujimura
,
T.
Goto
,
K.
Hachiya
,
R.
Hagiwara
, and
Y.
Ito
,
Thin Solid Films
492
,
88
(
2005
).
28.
J. H.
Hildebrand
,
J. Am. Chem. Soc.
40
,
45
(
1918
).
29.
F. J.
Zong
,
H. L.
Ma
,
W.
Liang
,
W.
Du
,
X. J.
Zhang
,
H. D.
Xiao
,
J.
Ma
,
F.
Ji
,
C. S.
Xue
, and
H. Z.
Zhuang
,
Chin. Phys. Lett.
22
,
907
(
2005
).
30.
R.
Long
,
Y.
Dai
,
L.
Yu
,
M.
Guo
, and
B. B.
Huang
,
J. Phys. Chem. B
111
,
3379
(
2007
).
31.
C. S.
Gallinat
,
G.
Koblmüller
, and
J. S.
Speck
,
Appl. Phys. Lett.
95
,
022103
(
2009
).
32.
VC. G.
Van de Walle
,
J. L.
Lyons
, and
A.
Janotti
,
Phys. Status Solidi A
207
,
1024
(
2010
).
33.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Physical Electronics Inc.
,
Minnesota, USA
,
1995
).
34.
C.
Skierbiszewski
,
P.
Perlin
,
P.
Wisniewski
,
W.
Knap
,
T.
Suski
,
W.
Walukiewicz
,
W.
Shan
,
K. M.
Yu
,
J. W.
Ager
,
E. E.
Haller
,
J. F.
Geisz
, and
J. M.
Olson
,
Appl. Phys. Lett.
76
,
2409
(
2000
).
35.
C. P.
Foley
and
T. L.
Tansley
,
Phys. Rev. B
33
,
1430
(
1986
).
36.
D. M.
Szmyd
,
P.
Porro
,
A.
Majerfeld
, and
S.
Lagomarsino
,
J. Appl. Phys.
68
,
2367
(
1990
).
37.
W. G.
Spitzer
and
H. Y.
Fan
,
Phys. Rev.
106
,
882
(
1957
).
38.
Y.
Furubayashi
,
N.
Yamada
,
Y.
Hirose
,
Y.
Yamamoto
,
M.
Otani
,
T.
Hitosugi
,
T.
Shimada
, and
T.
Hasegawa
,
J. Appl. Phys.
101
,
093705
(
2007
).
39.
T.
Minami
,
H.
Sato
,
K.
Ohashi
,
T.
Tomofuji
, and
S.
Takata
,
J. Cryst. Growth
117
,
370
(
1992
).
40.
H.
Fujiwara
and
M.
Kondo
,
Phys. Rev. B
71
,
75109
(
2005
).
41.
J. S.
Kim
,
J. H.
Jeong
,
J. K.
Park
,
Y. J.
Baik
,
I. H.
Kim
,
T. Y.
Seong
, and
W. M.
Kim
,
J. Appl. Phys.
111
,
123507
(
2012
).
42.
X.
Wu
,
T. J.
Coutts
, and
W. P.
Mulligan
,
J. Vac. Sci. Technol., A
15
,
1057
(
1997
).
43.
T.
Pisarkiewicz
,
K.
Zakrzewska
, and
E.
Leja
,
Thin Solid Films
174
,
217
(
1989
).
44.
M.
Goiran
,
M.
Millot
,
J. M.
Poumirol
,
I.
Gherasoiu
,
W.
Walukiewicz
, and
J.
Leotin
,
Appl. Phys. Lett.
96
,
052117
(
2010
).
45.
M.
Millot
,
N.
Ubrig
,
J. M.
Poumirol
,
I.
Gherasoiu
,
W.
Walukiewicz
,
S.
George
,
O.
Portugall
,
J.
Léotin
,
M.
Goiran
, and
J. M.
Broto
,
Phys. Rev. B
83
,
125204
(
2011
).
46.
K.
Seeger
,
Semiconductor Physics: An Introduction
(
Springer
,
New York
,
2011
).
47.
D. S.
Ginley
,
H.
Hosono
, and
D. C.
Paine
,
Handbook of Transparent Conductors
(
Springer
,
New York, USA
,
2010
).
48.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1986
).
49.
A.
Yamamoto
,
T.
Shin-ya
,
T.
Sugiura
, and
A.
Hashimoto
,
J. Cryst. Growth
189/190
,
461
(
1998
).
50.
51.
L.
Hsu
,
R. E.
Jones
,
S. X.
Li
,
K. M.
Yu
, and
W.
Walukiewicz
,
J. Appl. Phys.
102
,
073705
(
2007
).
52.
N.
Khan
,
A.
Sedhain
,
J.
Li
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
92
,
172101
(
2008
).
53.
K.
Ellmer
and
R.
Mientus
,
Thin Solid Films
516
,
5829
(
2008
).
54.
M.
Lorenz
,
E. M.
Kaidashev
,
H.
von Wenckstern
,
V.
Riede
,
C.
Bundesmann
,
D.
Spemann
,
G.
Benndorf
,
H.
Hochmuth
,
A.
Rahm
,
H.-C.
Semmelhack
, and
M.
Grundmann
,
Solid-State Electron.
47
,
2205
(
2003
).
55.
T.
Makino
,
Y.
Segawa
,
A.
Tsukazaki
,
A.
Ohtomo
, and
M.
Kawasaki
,
Appl. Phys. Lett.
87
,
022101
(
2005
).
56.
S.
Fritze
,
A.
Dadgar
,
H.
Witte
,
M.
Bügler
,
A.
Rohrbeck
,
J.
Bläsing
,
A.
Hoffmann
, and
A.
Krost
,
Appl. Phys. Lett.
100
,
122104
(
2012
).
57.
P. R.
Hageman
,
W. J.
Schaff
,
J.
Janinski
, and
Z.
Liliental-Weber
,
J. Cryst. Growth
267
,
123
(
2004
).
You do not currently have access to this content.