Rutherford Backscattering Spectrometry/Channeling and Extended X-ray Absorption Fine Structure measurements have been combined to investigate the amorphization of InxGa1−xP alloys at 15 and 300 K for selected stoichiometries representative of the entire stoichiometric range. The amorphization kinetics differs considerably for the two temperatures: at 15 K, the amorphization kinetics of InxGa1−xP is intermediate between the two binary extremes while at 300 K, InxGa1−xP is more easily amorphized than both InP and GaP. Direct impact and stimulated amorphization both contribute to the amorphization process at 15 K. Dynamic annealing via thermally induced Frenkel pair recombination reduces the influence of direct impact amorphization at 300 K such that the stimulated amorphization is dominant. At this temperature, stimulated amorphization in ternary InxGa1−xP alloys is supported by the structural disorder inherent from the bimodal bond length distribution.

1.
G.-B.
Gao
,
S. N.
Mohammand
,
G. A.
Martin
, and
H.
Morkoc
,
Int. J. High Speed Electron. Syst.
06
,
1
89
(
1995
).
2.
J.
Novak
,
S.
Hasenhohrl
,
I.
Vavra
, and
M.
Kucera
,
Appl. Phys. A
87
,
511
516
(
2007
).
3.
Y. A.
Chang
,
Z. Y.
Li
,
H. C.
Kuo
,
T. C.
Lu
,
S. F.
Yang
,
L. W.
Lai
,
L. H.
Lai
, and
S. C.
Wang
,
Semicond. Sci. Technol.
24
,
085007
(
2009
).
4.
H. P. T.
Nguyen
,
K. H.
Kim
,
H.
Lim
, and
J. J.
Lee
, in
International Workshop on Advanced Material for New and Renewable Energy
(
2009
), Vol.
1169
, pp.
149
154
.
5.
M.
Yamaguchi
,
Sol. Energy Mater. Sol. Cells
75
,
261
269
(
2003
).
6.
W. C.
Yang
,
C.
Lo
,
C. Y.
Wei
, and
W. S.
Lour
,
IEEE Electron Device Lett.
32
,
1412
1414
(
2011
).
7.
Y.
Cai
and
M. F.
Thorpe
,
Phys. Rev. B
46
,
15879
15886
(
1992
).
8.
J. B.
Boyce
and
J. C.
Mikkelsen
,
J. Cryst. Growth
98
,
37
43
(
1989
).
9.
C. S.
Schnohr
,
L. L.
Araujo
,
P.
Kluth
,
D. J.
Sprouster
,
G. J.
Foran
, and
M. C.
Ridgway
,
Phys. Rev. B
78
,
115201
(
2008
).
10.
C. S.
Schnohr
,
Appl. Phys. Rev.
2
,
031304
(
2015
).
11.
Z. S.
Hussain
,
E.
Wendler
,
W.
Wesch
,
G. J.
Foran
,
C. S.
Schnohr
,
D. J.
Llewellyn
, and
M. C.
Ridgway
,
Phys. Rev. B
79
,
085202
(
2009
).
12.
C. S.
Schnohr
,
P.
Kluth
,
R.
Giulian
,
D. J.
Llewellyn
,
A. P.
Byrne
,
D. J.
Cookson
, and
M. C.
Ridgway
,
Phys. Rev. B
81
,
075201
(
2010
).
13.
U. G.
Akano
,
I. V.
Mitchell
,
F. R.
Shepherd
, and
C. J.
Miner
,
Nucl. Instrum. Methods Phys. Res. B
106
,
308
312
(
1995
).
14.
E.
Wendler
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2680
2689
(
2009
).
15.
E.
Bezakova
,
A. P.
Byrne
,
C. J.
Glover
,
M. C.
Ridgway
, and
R.
Vianden
,
App. Phys. Lett.
75
,
1923
1925
(
1999
).
16.
C. S.
Schnohr
,
P.
Kluth
,
A. P.
Byrne
,
G. J.
Foran
, and
M. C.
Ridgway
,
Phys. Rev. B
77
,
073204
(
2008
).
17.
J.
Krynicki
,
A.
Kozanecki
,
W.
Szyszko
, and
R.
Groetzschel
,
Radiat. Eff.
115
,
219
226
(
1990
).
18.
K. S.
Jones
and
C. J.
Santana
,
J. Mater. Res.
6
,
1048
(
1991
).
19.
W.
Wesch
,
E.
Wendler
,
T.
Bachmann
, and
O.
Herre
,
Nucl. Instrum. Methods Phys. Res. B
96
,
290
293
(
1995
).
20.
V. L.
Wrick
,
W. J.
Choyke
, and
C. F.
Tzeng
,
Electron. Lett.
17
,
752
754
(
1981
).
21.
E.
Wendler
,
B.
Breeger
,
C.
Schubert
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res. Sect. B
147
,
155
165
(
1999
).
22.
E.
Wendler
, in
Application of Accelerators in Research and Industry
, edited by
J. L.
Duggan
and
I. L.
Morgan
(
American Institute of Physics
,
2003
), Vol.
680
, pp.
670
674
.
23.
R.
Dogra
,
Z. S.
Hussain
, and
A. K.
Sharma
,
Mater. Charact.
58
,
652
657
(
2007
).
24.
E.
Wendler
,
T.
Opfermann
, and
P. I.
Gaiduk
,
J. Appl. Phys.
82
,
5965
5975
(
1997
).
25.
M.
Kondow
,
H.
Kakibayashi
, and
S.
Minagawa
,
J. Cryst. Growth
88
,
291
296
(
1988
).
26.
M.
Zorn
,
P.
Kurpas
,
A. I.
Shkrebtii
,
B.
Junno
,
A.
Bhattacharya
,
K.
Knorr
,
M.
Weyers
,
L.
Samuelson
,
J. T.
Zettler
, and
W.
Richter
,
Phys. Rev. B
60
,
8185
8190
(
1999
).
27.
F.
Léonard
and
R.
Desai
,
Thin Solid Films
357
,
46
52
(
1999
).
28.
M.
Kahn
and
D.
Ritter
,
Appl. Phys. Lett.
79
,
2928
2930
(
2001
).
29.
B.
Breeger
,
E.
Wendler
,
W.
Trippensee
,
C.
Schubert
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res. B
174
,
199
204
(
2001
).
30.
J. F.
Ziegler
,
Nucl. Instrum. Methods Phys. Res. B
219–220
,
1027
1036
(
2004
).
31.
N.
Hecking
,
K. F.
Heidemann
, and
E. T.
Kaat
,
Nucl. Instrum. Methods Phys. Res. B
15
,
760
764
(
1986
).
32.
W. J.
Weber
,
Nucl. Instrum. Methods Phys. Res. B
166
,
98
106
(
2000
).
33.
Y.
Sasaki
,
T.
Katayama
,
T.
Koishi
,
K.
Shibahara
,
S.
Yokoyama
,
S.
Miyazaki
, and
H.
Hirose
,
J. Electrochem. Soc.
146
,
710
(
1999
).
34.
S.
Decoster
,
C. J.
Glover
,
B.
Johannessen
,
R.
Giulian
,
D. J.
Sprouster
,
P.
Kluth
,
L. L.
Araujo
,
Z. S.
Hussain
,
C.
Schnohr
,
H.
Salama
,
F.
Kremer
,
K.
Temst
,
A.
Vantomme
, and
M. C.
Ridgway
,
J. Synchrotron Radiat.
20
,
426
432
(
2013
).
35.
B.
Ravel
and
M.
Newville
,
J. Synchrotron Radiat.
12
,
537
(
2005
).
36.
E.
Wendler
and
L.
Wendler
,
Appl. Phys. Lett.
100
,
192108
(
2012
).
37.
B.
Breeger
,
E.
Wendler
,
C.
Schubert
, and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res. B
148
,
468
(
1999
).
38.
W.
Wesch
,
E.
Wendler
,
Z. S.
Hussain
,
S. M.
Kluth
, and
M. C.
Ridgway
,
Nucl. Instrum. Methods Phys. Res. B
242
,
480
483
(
2006
).
39.
Y.
Cai
and
M. F.
Thorpe
,
Phys. Rev. B
46
,
15872
(
1992
).
40.
J. B.
Boyce
and
J. C.
Mikkelsen
,
Ternary and Multinary Compounds
(
Materials Research Society
,
Pittsburgh
,
1987
), p.
359
.
41.
E.
Wendler
and
W.
Wesch
, in
Advances in Solid State Physics
, edited by
B.
Kramer
(
Springer-Verlag
,
2004
), Vol.
44
, pp.
339
350
.
42.
E.
Wendler
and
W.
Wesch
,
Nucl. Instrum. Methods Phys. Res. B
242
,
562
564
(
2006
).
You do not currently have access to this content.