Silicon is an attractive material for solar water splitting applications due to its abundance and its capacity to absorb a large fraction of incident solar radiation. However, it has not received as much attention as other materials due to its tendency to oxidize very quickly in aqueous environments, particularly when it is employed as the anode where it drives the oxygen evolution reaction. In recent years, several works have appeared in the literature examining the suitability of thin transition metal oxide films grown on top of the silicon to act as a corrosion barrier. The film should be transparent to solar radiation, allow hole transport from the silicon surface to the electrolyte, and stop the diffusion of oxygen from the electrolyte back to the silicon. In this work, we compare Mn-oxide, Co-oxide, and Ni-oxide thin films grown using physical vapor deposition in order to evaluate which material offers the best combination of photocurrent and corrosion protection. In addition to the electrochemical data, we also present a detailed before-and-after study of the surface chemistry of the films using x-ray photoelectron spectroscopy. This approach allows for a comprehensive analysis of the mechanisms by which the corrosion barriers protect the underlying silicon, and how they degrade during the water oxidation reaction.

1.
M. G.
Walter
,
E. L.
Warren
,
J. R.
McKone
,
S. W.
Boettcher
,
Q.
Mi
,
E. A.
Santori
 et al., “
Solar water splitting cells
,”
Chem. Rev.
110
,
6446
6473
(
2010
).
2.
A.
Fujishima
and
K.
Honda
, “
Electrochemical photolysis of water at a semiconductor electrode
,”
Nature
238
,
37
38
(
1972
).
3.
F. F.
Abdi
,
L.
Han
,
A. H. M.
Smets
,
M.
Zeman
,
B.
Dam
, and
R.
van de Krol
, “
Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode
,”
Nat. Commun.
4
,
1
7
(
2013
).
4.
S. Y.
Reece
,
J. A.
Hamel
,
K.
Sung
,
T. D.
Jarvi
,
A. J.
Esswein
,
J. J. H.
Pijpers
 et al., “
Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts
,”
Science
334
,
645
648
(
2011
).
5.
J. R.
Bolton
,
S. J.
Strickler
, and
J. S.
Connolly
, “
Limiting and realizable efficiencies of solar photolysis of water
,”
Nature
316
,
495
500
(
1985
).
6.
M. J.
Kenney
,
M.
Gong
,
Y.
Li
,
J. Z.
Wu
,
J.
Feng
,
M.
Lanza
 et al., “
High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation
,”
Science
342
,
836
840
(
2013
).
7.
J.
Yang
,
K.
Walczak
,
E.
Anzenberg
,
F. M.
Toma
,
G.
Yuan
,
J.
Beeman
 et al., “
Efficient and sustained photoelectrochemical water oxidation by cobalt oxide/silicon photoanodes with nanotextured interfaces
,”
J. Am. Chem. Soc.
136
,
6191
6194
(
2014
).
8.
N. C.
Strandwitz
,
D. J.
Comstock
,
R. L.
Grimm
,
A. C.
Nichols-Nielander
,
J.
Elam
, and
N. S.
Lewis
, “
Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition
,”
J. Phys. Chem. C
117
,
4931
4936
(
2013
).
9.
R.
O'Connor
,
J.
Bogan
,
N.
Fleck
,
A.
McCoy
,
L. A.
Walsh
,
C.
Byrne
 et al., “
Growth and characterization of thin manganese oxide corrosion barrier layers for silicon photoanode protection during water oxidation
,”
Sol. Energy Mater. Sol. Cells
136
,
64
69
(
2015
).
10.
Y. W.
Chen
,
J. D.
Prange
,
S.
Dühnen
,
Y.
Park
,
M.
Gunji
,
C. E. D.
Chidsey
 et al., “
Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
,”
Nat. Mater.
10
,
539
544
(
2011
).
11.
B.
Seger
,
D. S.
Tilley
,
T.
Pedersen
,
P. C. K.
Vesborg
,
O.
Hansen
,
M.
Grätzel
 et al., “
Silicon protected with atomic layer deposited TiO2: Durability studies of photocathodic H2 evolution
,”
RSC Adv.
3
,
25902
(
2013
).
12.
P.
Ororzco
,
Aanalzyer Version 1.07
, http://www.rdataa.com/aanalyzer/aanaHome.htm
13.
O.
Khaselev
, “
A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting
,”
Science
280
,
425
427
(
1998
).
14.
P.
Casey
,
J.
Bogan
,
J. G.
Lozano
,
P. D.
Nellist
, and
G.
Hughes
, “
Chemical and structural investigation of the role of both Mn and Mn oxide in the formation of manganese silicate barrier layers on SiO2
,”
J. Appl. Phys.
110
,
054507
(
2011
).
15.
A. P.
Grosvenor
,
M. C.
Biesinger
,
R. S. C.
Smart
, and
N. S.
McIntyre
, “
New interpretations of XPS spectra of nickel metal and oxides
,”
Surf. Sci.
600
,
1771
1779
(
2006
).
16.
E. S.
Lambers
,
C. N.
Dykstal
,
J. M.
Seo
,
J. E.
Rowe
, and
P. H.
Holloway
, “
Room-temperature oxidation of Ni(110) at low and atmospheric oxygen pressures
,”
Oxid. Met.
45
,
301
321
(
1996
).
17.
K. S.
Kim
and
N.
Winograd
, “
X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment
,”
Surf. Sci.
43
,
625
643
(
1974
).
18.
M. C.
Biesinger
,
B. P.
Payne
,
A. P.
Grosvenor
,
L. W. M.
Lau
,
A. R.
Gerson
, and
R. S. C.
Smart
, “
Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni
,”
Appl. Surf. Sci.
257
,
2717
2730
(
2011
).
19.
M. V.
Gomoyunova
,
I. I.
Pronin
,
N. R.
Gall
,
S. L.
Molodtsov
, and
D. V.
Vyalikh
, “
The interaction of cobalt with oxidized silicon surface
,”
Tech. Phys. Lett.
30
,
850
853
(
2004
).
20.
X.
Zhou
,
R.
Liu
,
K.
Sun
,
D.
Friedrich
,
M. T.
McDowell
,
F.
Yang
 et al., “
Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide
,”
Energy Environ. Sci.
8
,
2644
2649
(
2015
).
21.
M.
Fujiwara
,
T.
Matsushita
, and
S.
Ikeda
, “
Evaluation of Mn3s X-ray photoelectron spectroscopy for characterization of manganese complexes
,”
J. Electron Spectrosc. Relat. Phenom.
74
,
201
206
(
1995
).
You do not currently have access to this content.