In this work, we analyze the spatial and temporal features of electromagnetic X-waves propagating in free space and generated by planar radiating apertures. The performance of ideal X-waves is discussed and compared to practical cases where the important effects related to the finiteness of the radiating aperture and the wavenumber dispersion are taken into account. In particular, a practical device consisting of a radial waveguide loaded with radiating slots aligned along a spiral path is considered for the practical case in the millimeter-wave range. A common mathematical framework is defined for a precise comparison of the spatiotemporal properties and focusing capabilities of the generated X-wave. It is clearly shown that the fractional bandwidth of the radiating aperture has a key role in the longitudinal confinement of an X-wave in both ideal and practical cases. In addition, the finiteness of the radiating aperture as well as the wavenumber dispersion clearly affect both the transverse and the longitudinal profiles of the generated radiation as it travels beyond the depth-of-field of the generated X-wave. Nevertheless, the spatiotemporal properties of the X-wave are preserved even in this “dispersive-finite” case within a defined region and duration related to the nondiffractive range and fractional bandwidth of the spectral components of the generated X-wave. The proposed analysis may open new perspectives for the efficient generation of X-waves over finite radiating apertures at millimeter waves where the dispersive behavior of realistic devices is no longer negligible.

1.
H. E.
Hernández-Figueroa
,
M.
Zamboni-Rached
, and
E.
Recami
,
Nondiffracting Waves
(
John Wiley & Sons
,
2013
).
2.
H. E.
Hernández-Figueroa
,
M.
Zamboni-Rached
, and
E.
Recami
,
Localized Waves
(
John Wiley & Sons
,
2007
), Vol.
194
.
3.
J.
Durnin
,
J. Opt. Soc. Am. A
4
,
651
(
1987
).
4.
J.
Durnin
,
J. J.
Miceli
, Jr.
, and
J. H.
Eberly
,
Phys. Rev. Lett.
58
,
1499
(
1987
).
5.
R.
Herman
and
T.
Wiggins
,
J. Opt. Soc. Am. A
8
,
932
(
1991
).
6.
J.
Arlt
and
K.
Dholakia
,
Opt. Commun.
177
,
297
(
2000
).
7.
S.
Monk
,
J.
Arlt
,
D.
Robertson
,
J.
Courtial
, and
M.
Padgett
,
Opt. Commun.
170
,
213
(
1999
).
8.
G.
Milne
,
G. D.
Jeffries
, and
D. T.
Chiu
,
Appl. Phys. Lett.
92
,
261101
(
2008
).
9.
W.
Williams
and
J.
Pendry
,
J. Opt. Soc. Am. A
22
,
992
(
2005
).
10.
A.
Vasara
,
J.
Turunen
, and
A. T.
Friberg
,
J. Opt. Soc. Am. A
6
,
1748
(
1989
).
11.
P.
Lemaitre-Auger
,
S.
Abielmona
, and
C.
Caloz
,
IEEE Trans. Antennas Propag.
61
,
1838
(
2013
).
12.
A.
Mazzinghi
,
M.
Balma
,
D.
Devona
,
G.
Guarnieri
,
G.
Mauriello
,
M.
Albani
, and
A.
Freni
,
IEEE Trans. Antennas Propag.
62
,
3911
(
2014
).
13.
M. F.
Imani
and
A.
Grbic
,
IEEE Trans. Antennas Propag.
60
,
3155
(
2012
).
14.
M.
Ettorre
,
S. M.
Rudolph
, and
A.
Grbic
,
IEEE Trans. Antennas Propag.
60
,
2645
(
2012
).
15.
M.
Albani
,
S.
Pavone
,
M.
Casaletti
, and
M.
Ettorre
,
Opt. Express
22
,
18354
(
2014
).
16.
M.
Zamboni-Rached
and
E.
Recami
, preprint arXiv:1408.5635.
17.
M.
Zamboni-Rached
,
M. C.
de Assis
, and
L. A.
Ambrosio
,
Appl. Opt.
54
,
5949
(
2015
).
18.
M.
Lapointe
,
Opt. Laser Technol.
24
,
315
(
1992
).
19.
D.
McGloin
and
K.
Dholakia
,
Contemp. Phys.
46
,
15
(
2005
).
21.
J. N.
Brittingham
,
J. Appl. Phys.
54
,
1179
(
1983
).
22.
R. W.
Ziolkowski
,
J. Math. Phys.
26
,
861
(
1985
).
23.
A.
Sezginer
,
J. Appl. Phys.
57
,
678
(
1985
).
24.
E.
Capelas de Oliveira
and
W.
Rodrigues
,
Phys. Lett. A
291
,
367
(
2001
).
25.
J.-Y.
Lu
and
J. F.
Greenleaf
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
19
(
1992
).
26.
J.-Y.
Lu
and
J. F.
Greenleaf
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
39
,
441
(
1992
).
27.
P.
Saari
and
K.
Reivelt
,
Phys. Rev. Lett.
79
,
4135
(
1997
).
29.
W. A.
Rodrigues
, Jr.
and
J.-Y.
Lu
,
Found. Phys.
27
,
435
(
1997
).
30.
A. A.
Chatzipetros
,
A. M.
Shaarawi
,
I. M.
Besieris
, and
M. A.
Abdel-Rahman
,
J. Acoust. Soc. Am.
103
,
2287
(
1998
).
31.
R. W.
Ziolkowski
,
I. M.
Besieris
, and
A. M.
Shaarawi
,
J. Opt. Soc. Am. A
10
,
75
(
1993
).
32.
M. A.
Porras
,
G.
Valiulis
, and
P.
Di Trapani
,
Phys. Rev. E
68
,
016613
(
2003
).
33.
H.
Sonajalg
and
P.
Saari
,
Opt. Lett.
21
,
1162
(
1996
).
34.
W.
Rodrigues
,
D. S.
Thober
, and
A.
Xavier
,
Phys. Lett. A
284
,
217
(
2001
).
35.
E.
Capelas de Oliveira
,
W.
Rodrigues
,
D.
Thober
, and
A.
Xavier
,
Phys. Lett. A
284
,
296
(
2001
).
36.
E.
Capelas de Oliveira
and
W.
Rodriguez
,
Ann. Phys. (Berlin)
7
,
654
(
1998
).
37.
D.
Mugnai
,
A.
Ranfagni
, and
R.
Ruggeri
,
Phys. Rev. Lett.
84
,
4830
(
2000
).
38.
M.
Zamboni-Rached
,
E.
Recami
, and
H. E.
Hernández-Figueroa
,
Eur. Phys. J. D
21
,
217
(
2002
).
39.
I. M.
Besieris
,
A. M.
Shaarawi
, and
R. W.
Ziolkowski
,
J. Math. Phys.
30
,
1254
(
1989
).
40.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1962
).
41.
W.
Rudin
,
Principles of Mathematical Analysis
(
McGraw-Hill
,
New York
,
1976
).
42.
M.
Ettorre
,
S.
Pavone
,
M.
Casaletti
, and
M.
Albani
,
IEEE Trans. Antennas Propag.
63
,
2539
(
2015
).
43.
C. A.
Balanis
,
Advanced Engineering Electromagnetics
(
Wiley Online Library
,
2012
), Vol.
111
.
44.
S.
Chávez-Cerda
,
J. Mod. Opt.
46
,
923
(
1999
).
45.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1962
), Vol.
3
.
46.
A. A.
Oliner
and
A.
Hessel
,
IRE Trans. Antennas Propag.
7
,
201
(
1959
).
47.
E.
Heyman
,
IEEE Trans. Antennas Propag.
37
,
1604
(
1989
).
You do not currently have access to this content.