There are a few methodologies for monitoring the in-situ formation of Porous Silicon (PS). One of the methodologies is photoacoustic. Previous works that reported the use of photoacoustic to study the PS formation do not provide the physical explanation of the origin of the signal. In this paper, a physical explanation of the origin of the photoacoustic signal during the PS etching is provided. The incident modulated radiation and changes in the reflectance are taken as thermal sources. In this paper, a useful methodology is proposed to determine the etching rate, porosity, and refractive index of a PS film by the determination of the sample thickness, using scanning electron microscopy images. This method was developed by carrying out two different experiments using the same anodization conditions. The first experiment consisted of growth of the samples with different etching times to prove the periodicity of the photoacoustic signal, while the second one considered the growth samples using three different wavelengths that are correlated with the period of the photoacoustic signal. The last experiment showed that the period of the photoacoustic signal is proportional to the laser wavelength.

1.
S. E.
Foss
,
P. Y. Y.
Kan
, and
T. G.
Finstad
,
J. Appl. Phys.
97
,
114909
(
2005
).
2.
L. T.
Canham
,
T. I.
Cox
,
A.
Loni
, and
A. J.
Simons
,
Appl. Surf. Sci.
102
,
436
(
1996
).
3.
P. A.
Snow
,
E. K.
Squire
,
P.
St.
,
J.
Russell
, and
L. T.
Canham
,
J. Appl. Phys.
86
,
1781
(
1999
).
4.
J.
Charrier
and
M.
Dribek
,
J. Appl. Phys.
107
,
044905
(
2010
).
5.
Y. Y.
Li
,
F.
Cunin
,
J. R.
Link
,
T.
Gao
,
R. E.
Betts
,
S. H.
Reiver
,
V.
Chin
,
S. N.
Bhatia
, and
M. J.
Sailor
,
Science
299
(
5615
),
2045
2047
(
2003
).
6.
A. V.
Rao
,
F.
Ozanam
, and
J. N.
Chazalviel
,
J. Electrochem. Soc.
138
,
153
159
(
1991
).
7.
Y. P.
Zhao
,
J.
Wu
,
H. N.
Yang
,
G. C.
Wang
, and
T. M.
Lu
,
Appl. Phys. Lett.
69
(
2
),
221
223
(
1996
).
8.
A.
Gutiérrez
,
J.
Giraldo
,
R.
Velázquez-Hernández
,
M. L.
Mendoza-López
,
D. G.
Espinosa-Arbeláez
,
A.
del Real
, and
M. E.
Rodriguez-García
,
Rev. Sci. Instrum.
81
,
013901
(
2010
).
9.
M.
Isaiev
,
K.
Voitenko
,
V.
Doroshchuk
,
D.
Andrusenko
,
A.
Kuzmich
,
A.
Skryshevskii
,
V.
Lysenko
, and
R.
Burbelo
,
Phys. Procedia
70
,
586
589
(
2015
).
10.
D. G.
Espinosa-Arbeláes
,
R. V.
Velásquez-Hernández
,
J.
Petricioli-Carranco
,
R.
Quintero-Torres
, and
M. E.
Rodríguez-García
,
Phys. Status Solidi C
8
(
6
),
1856
1859
(
2011
).
11.
P. Y. Y.
Kan
,
S. E.
Foss
, and
T. G.
Finstad
,
Phys. Status Solidi A
202
,
8
,
1533
1538
(
2005
).
12.
A.
Rosencwaig
and
A.
Gersho
,
J. Appl. Phys.
47
,
64
(
1976
).
13.
C. L.
Mitsas
and
D. I.
Siapkas
,
Appl. Opt.
34
(
10
),
1678
1683
(
1995
).
14.
M.
Itano
,
F. W.
Kern
,
M.
Miyashita
, and
T.
Ohmi
,
IEEE Trans. Semicond. Manuf.
6
(
3
),
258
267
(
1993
).
15.
W.
Kern
,
J. Electrochem. Soc.
137
(
6
),
1887
1892
(
1990
).
16.
H.
Looyenga
,
Physica
31
(
3
),
401
406
(
1965
).
17.
C.
Tsai
,
K. H.
Li
, and
J. C.
Campbell
,
J. Electron. Mater.
21
(
10
),
995
1000
(
1992
).
18.
D. A. G.
Bruggeman
,
Ann. Phys.
416
,
636
(
1935
).
19.
G. A.
Niklasson
,
C. G.
Granqvist
, and
O.
Hunderi
,
Appl. Opt.
20
(
1
),
26
30
(
1981
).
You do not currently have access to this content.