Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

1.
2.
S. T.
Lagerwall
,
Mol. Cryst. Liq. Cryst.
543
,
769
813
(
2011
).
3.
R. B.
Meyer
,
Phys. Rev. Lett.
22
,
918
(
1969
).
4.
J. S.
Patel
and
R. B.
Meyer
,
Phys. Rev. Lett.
58
,
1538
(
1987
).
5.
N.
Koma
,
T.
Miyashita
, and
T.
Uchida
,
J. Soc. Inf. Disp.
9
,
8
(
2005
).
6.
P.
Rudquist
and
S.
Lagerwall
,
Flexoelectricity in Liquid Crystals
(
Imperial College Press
,
London, UK
,
2013
).
7.
P. S.
Salter
,
G.
Carbone
,
S. A.
Jewell
,
S. J.
Elston
, and
P.
Raynes
,
Phys. Rev. E
80
,
041707
(
2009
).
8.
P.
Rudquist
,
L.
Komitov
, and
S.
Lagerwall
,
Liq. Cryst.
24
,
329
(
1998
).
9.
B. J.
Broughton
,
M. J.
Clarke
,
S. M.
Morris
,
A. E.
Blatch
, and
H. J.
Coles
,
J. Appl. Phys.
99
,
023511
(
2006
).
10.
G.
Carbone
,
D.
Corbett
,
S.
Elston
,
P.
Raynes
,
A.
Jesacher
,
R.
Simmonds
, and
M.
Booth
,
Mol. Cryst. Liq. Cryst.
544
,
37
(
2011
).
11.
R. B.
Meyer
and
J. S.
Patel
, “
Flexoelectric liquid crystal device
,” U.S. patent 4,917,475 (
1987
).
12.
L.
Komitov
,
G.
Bryan-Brown
,
E.
Wood
, and
A.
Smout
,
J. Appl. Phys.
86
,
3508
(
1999
).
13.
G.
Carbone
,
P.
Salter
,
S.
Elston
,
P.
Raynes
,
L.
De Sio
,
S.
Ferjani
,
G.
Strangi
,
C.
Umeton
, and
R.
Bartolino
,
Appl. Phys. Lett.
95
,
011102
(
2009
).
14.
W. R.
Zipfel
,
R. M.
Williams
, and
W. W.
Webb
,
Nat. Biotechnol.
21
,
1369
(
2003
).
15.
P.
Salter
,
A.
Jesacher
,
J.
Spring
,
B.
Metcalf
,
N.
Thomas-Peter
,
R.
Simmonds
,
N.
Langford
,
I.
Walmsley
, and
M.
Booth
,
Opt. Lett.
37
,
470
(
2012
).
16.
H. J.
Coles
,
B.
Musgrave
,
M. J.
Coles
, and
J.
Willmott
,
J. Mater. Chem.
11
,
2709
(
2001
).
17.
A. E.
Blatch
,
M. J.
Coles
,
B.
Musgrave
, and
H. J.
Coles
,
Mol. Cryst. Liq. Cryst.
401
,
161
(
2003
).
18.
H. J.
Coles
,
M. J.
Clarke
,
S. M.
Morris
,
B. J.
Broughton
, and
A. E.
Blatch
,
J. Appl. Phys.
99
,
034104
(
2006
).
19.
H.
Xianyu
,
S.-T.
Wu
, and
C.-L.
Lin
,
Liq. Cryst.
36
,
717
726
(
2009
).
20.
M.
Mrukiewicz
,
P.
Perkowski
, and
K.
Garbat
,
Liq. Cryst.
42
,
1036
(
2015
).
21.
R.
Penterman
,
S.
Klink
,
H.
de Koning
,
G.
Nisato
, and
D.
Broer
,
Nature
417
,
55
(
2002
).
22.
F.
Castles
,
F. V.
Day
,
S. M.
Morris
,
D.-H.
Ko
,
D. J.
Gardiner
,
M. M.
Qasim
,
S.
Nosheen
,
P. J. W.
Hands
,
S. S.
Choi
,
R. H.
Friend
, and
H. J.
Coles
,
Nat. Mater.
11
,
599
(
2012
).
You do not currently have access to this content.