Electrically detected magnetic resonance (EDMR) is a powerful technique for the observation and categorization of paramagnetic defects within semiconductors. The interpretation of the recorded EDMR spectra has long proved to be challenging. Here, defect spectra are identified by comparing EDMR measurements with extensive ab initio calculations. The defect identification is based upon the defect symmetry and the form of the hyperfine (HF) structure. A full description is given of how an accurate spectrum can be generated from the theoretical data by considering some thousand individual HF contributions out of some billion possibilities. This approach is illustrated with a defect observed in nitrogen implanted silicon carbide (SiC). Nitrogen implantation is a high energy process that gives rise to a high defect concentration. The majority of these defects are removed during the dopant activation anneal, shifting the interstitial nitrogen to the desired substitutional lattice sites, where they act as shallow donors. EDMR shows that a deep-level defect persists after the dopant activation anneal. This defect is characterized as having a gcB=2.0054(4) and gcB=2.0006(4), with pronounced hyperfine shoulder peaks with a 13 G peak to peak separation. The nitrogen at a carbon site next to a silicon vacancy (NCVSi) center is identified as the persistent deep-level defect responsible for the observed EDMR signal and the associated dopant deactivation.

1.
W. J.
Choyke
,
H.
Matsunami
, and
G.
Pensl
,
Silicon Carbide: Recent Major Advances
(
Springer Science & Business Media
,
2004
).
2.
P.
Friedrichs
,
T.
Kimoto
,
L.
Ley
, and
G.
Pensl
,
Silicon Carbide: Volume 1
(
John Wiley & Sons
,
2011
).
3.
S.
Seshadri
,
G. W.
Eldridge
, and
A. K.
Agarwal
,
Appl. Phys. Lett.
72
,
2026
(
1998
).
4.
K.
Szász
,
X. T.
Trinh
,
N. T.
Son
,
E.
Janzén
, and
A.
Gali
,
J. Appl. Phys.
115
,
073705
(
2014
).
5.
U.
Gerstmann
,
E.
Rauls
,
T.
Frauenheim
, and
H.
Overhof
,
Phys. Rev. B
67
,
205202
(
2003
).
6.
G.
Pensl
,
F.
Schmid
,
S. A.
Reshanov
,
H. B.
Weber
,
M.
Bockstedte
,
A.
Mattausch
,
O.
Pankratov
,
T.
Ohshima
, and
H.
Itoh
,
Mater. Sci. Forum
556–557
,
307
(
2007
).
7.
I. G.
Ivanov
,
B.
Magnusson
, and
E.
Janzén
,
Phys. Rev. B
67
,
165212
(
2003
).
8.
M. A.
Capano
,
J. A.
Cooper
, Jr.
,
M. R.
Melloch
,
A.
Saxler
, and
W. C.
Mitchel
,
J. Appl. Phys.
87
,
8773
(
2000
).
9.
G.
Pensl
,
T.
Frank
,
M.
Krieger
,
M.
Laube
,
S.
Reshanov
,
F.
Schmid
, and
M.
Weidner
,
Physica B
340–342
,
121
(
2003
).
10.
S.
Greulich-Weber
,
Phys. Status Solidi A
162
,
95
(
1997
).
11.
M. E.
Zvanut
and
J.
van Tol
,
Physica B
401–402
,
73
(
2007
).
12.
E. N.
Kalabukhova
,
S. N.
Lukin
,
D. V.
Savchenko
,
W. C.
Mitchel
,
S.
Greulich-Weber
,
U.
Gerstmann
,
A.
Poeppl
,
J.
Hoentsch
,
E.
Rauls
,
Y.
Rozentzveig
,
E. N.
Mokhov
,
M.
Syvaejaerrvi
, and
R.
Yakimova
,
Mater. Sci. Forum
556–557
,
355
(
2007
).
13.
D. V.
Savchenko
,
A.
Poeppl
,
E. N.
Kalabukhova
,
S.
Greulich-Weber
,
E.
Rauls
,
W. G.
Schmid
, and
U.
Gerstmann
,
Mater. Sci. Forum
615–617
,
343
(
2009
).
14.
U.
Gerstmann
,
E.
Rauls
,
S.
Greulich-Weber
,
E. N.
Kalabukhova
,
D. V.
Savchenko
,
A.
Poeppl
, and
F.
Mauri
,
Mater. Sci. Forum
556–557
,
391
(
2007
).
15.
H. J. V.
Bardeleben
,
J. L.
Cantin
,
S.
Hamon
,
K.
Khazen
,
U.
Gerstmann
, and
E.
Rauls
,
Phys. Rev. B
92
,
064104
(
2015
).
16.
T.
Aichinger
,
P. M.
Lenahan
,
B. R.
Tuttle
, and
D.
Peters
,
Appl. Phys. Lett.
100
,
112113
(
2012
).
17.
C. J.
Cochrane
,
P. M.
Lenahan
, and
A. J.
Lelis
,
J. Appl. Phys.
105
,
064502
(
2009
).
18.
B. R.
Tuttle
,
T.
Aichinger
,
P. M.
Lenahan
, and
S. T.
Pantelides
,
J. Appl. Phys.
114
,
113712
(
2013
).
19.
D. J.
Lepine
,
Phys. Rev. B
6
,
436
(
1972
).
20.
M. A.
Jupina
and
P. M.
Lenahan
,
IEEE Trans. Nucl. Sci.
36
,
1800
(
1989
).
21.
W.
Shockley
and
W. T.
Read
,
Phys. Rev.
87
,
835
(
1952
).
22.
R. N.
Hall
,
Phys. Rev.
87
,
387
(
1952
).
23.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
John Wiley & Sons
,
2007
).
24.
D.
Kaplan
,
I.
Solomon
, and
N. F.
Mott
,
J. Phys., Lett.
39
,
51
(
1978
).
25.
J. A.
Weil
,
J. R.
Bolton
, and
J. E.
Wertz
,
Electron Paramagnetic Resonance - Elementary Theory and Practical Applications
(
Wiley Interscience
,
1994
).
26.
C. J.
Pickard
and
F.
Mauri
,
Phys. Rev. Lett.
88
,
086403
(
2002
).
27.
J.
Vandevondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
);
G.
Lippert
,
J.
Hutter
, and
M.
Parrinello
,
Mol. Phys.
92
,
477
487
(
1997
);
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
[PubMed]
28.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
29.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
30.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
1710
(
1996
).
31.
T.
Hornos
,
A.
Gali
, and
B. G.
Svensson
,
Mater. Sci. Forum
679–680
,
261
(
2011
).
32.
F.
Jensen
,
J. Chem. Theory Comput.
2
,
1360
(
2006
).
33.
S. B.
Zhang
and
J. E.
Northrup
,
Phys. Rev. Lett.
67
,
2339
(
1991
).
34.
L.
Torpo
,
M.
Marlo
,
T. E. M.
Staab
, and
R. M.
Nieminen
,
J. Phys.: Condens. Matter
13
,
6203
(
2001
).
35.
S.
Lany
and
A.
Zunger
,
Modell. Simul. Mater. Sci. Eng.
17
,
084002
(
2009
).
36.
S. T.
Murphy
and
N. D. M.
Hine
,
Phys. Rev. B
87
,
094111
(
2013
).
37.
M.
Bockstedte
,
M.
Heid
, and
O.
Pankratov
,
Phys. Rev. B
67
,
193102
(
2003
).
38.
M.
Bockstedte
,
A.
Mattausch
, and
O.
Pankratov
,
Mater. Sci. Forum
457–460
,
715
(
2004
).
39.
M.
Bockstedte
,
A.
Mattausch
, and
O.
Pankratov
,
Phys. Rev. B
69
,
235202
(
2004
).
40.
M.
Bockstedte
,
A.
Gali
,
A.
Mattausch
,
O.
Pankratov
, and
J. W.
Steeds
,
Phys. Status Solidi B
245
,
1281
(
2008
).
41.
G.
Pensl
,
F.
Ciobanu
,
T.
Frank
,
D.
Kirmse
,
M.
Krieger
,
S.
Reshanov
,
F.
Schmid
,
M.
Weidner
,
T.
Ohshima
,
H.
Itoh
, and
W. J.
Choyke
,
Microelectron. Eng.
83
,
146
(
2006
).
42.
J. R.
Weber
,
W. F.
Koehl
,
J. B.
Varley
,
A.
Janotti
,
B. B.
Buckley
,
C. G.
Van De Walle
, and
D. D.
Awschalom
,
J. Appl. Phys.
109
,
102417
(
2011
).
43.
L.
Gordon
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
92
,
045208
(
2015
).
44.
A.
Gali
,
A.
Gällström
,
N. T.
Son
, and
E.
Janzén
,
Mater. Sci. Forum
645–648
,
395
(
2010
).
45.
A.
Gali
,
Phys. Status Solidi B
248
,
1337
(
2011
).
46.
A.
Gali
,
J. Mater. Res.
27
,
897
(
2012
).
47.
V. A.
Soltamov
,
A. A.
Soltamova
, and
P. G.
Baranov
,
Phys. Rev. Lett.
108
,
226402
(
2012
).
48.
W. F.
Koehl
,
B. B.
Buckley
,
F. J.
Heremans
,
G.
Calusine
, and
D. D.
Awschalom
,
Nature
479
,
84
(
2011
).
49.
M.
Widmann
,
S. Y.
Lee
,
T.
Rendler
,
N. T.
Son
,
H.
Fedder
,
S.
Paik
,
L. P.
Yang
,
N.
Zhao
,
S.
Yang
,
I.
Booker
,
A.
Denisenko
,
M.
Jamali
,
S. A.
Momenzadeh
,
I.
Gerhardt
,
T.
Ohshima
,
A.
Gali
,
E.
Janzén
, and
J.
Wrachtrup
,
Nat. Mater.
14
,
164
(
2015
).
50.
K.
Szász
,
V.
Ivády
,
I. A.
Abrikosov
,
E.
Janzén
,
M.
Bockstedte
, and
A.
Gali
,
Phys. Rev. B
91
,
121201
(
2015
).
51.
See supplementary material at http://dx.doi.org/10.1063/1.4948242 for a detailed tables of the variation of HF interaction between the various defect symmetry arrangements.

Supplementary Material

You do not currently have access to this content.