In this paper, we show that Inkjet Printing can be successfully applied to external-cavity vertically emitting thin-film organic lasers and can be used to generate a diffraction-limited output beam with an output energy as high as 33.6 μJ with a slope efficiency S of 34%. Laser emission shows to be continuously tunable from 570 to 670 nm using an intracavity polymer-based Fabry-Perot etalon. High-optical quality films with several μm thicknesses are realized, thanks to ink-jet printing. We introduce a new optical material where EMD6415 commercial ink constitutes the optical host matrix and exhibits a refractive index of 1.5 and an absorption coefficient of 0.66 cm−1 at 550–680 nm. Standard laser dyes like Pyrromethene 597 and Rhodamine 640 are incorporated in solution to the EMD6415 ink. Such large size “printed pixels” of 50 mm2 present uniform and flat surfaces, with roughness measured as low as 1.5 nm in different locations of a 50 μm × 50 μm AFM scan. Finally, as the gain capsules fabricated by Inkjet printing are simple and do not incorporate any tuning or cavity element, they are simple to make, have a negligible fabrication cost, and can be used as fully disposable items. This work opens the way towards the fabrication of really low-cost tunable visible lasers with an affordable technology that has the potential to be widely disseminated.

1.
S.
Chénais
and
S.
Forget
, “
Recent advances in solid-state organic lasers
,”
Polym. Int.
61
,
390
406
(
2012
).
2.
F.
Amat-Guerri
,
A.
Costela
,
J. M.
Figuera
,
F.
Florido
, and
R.
Sastre
, “
Laser action from rhodamine 6G-doped poly (2-hydroxyethyl methacrylate) matrices with different crosslinking degrees
,”
Chem. Phys. Lett.
209
,
352
356
(
1993
).
3.
A.
Costela
,
F.
Florido
,
I.
Garcia-Moreno
,
R.
Duchowicz
,
F.
Amat-Guerri
,
J. M.
Figuera
 et al., “
Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with rhodamine 6G
,”
Appl. Phys. B: Lasers Opt.
60
,
383
(
1995
).
4.
A.
Fu
and
P.
Yang
, “
Organic-inorganic perovskites: Lower threshold for nanowire lasers
,”
Nat. Mater.
14
,
557
558
(
2015
).
5.
A.
Rose
,
Z. G.
Zhu
,
C. F.
Madigan
,
T. M.
Swager
, and
V.
Bulovic
, “
Sensitivity gains in chemosensing by lasing action in organic polymers
,”
Nature
434
,
876
879
(
2005
).
6.
I. K.
Ding
,
J.
Melas-Kyriazi
,
N.-L.
Cevey-Ha
,
K. G.
Chittibabu
,
S. M.
Zakeeruddin
,
M.
Grätzel
 et al., “
Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading
,”
Org. Electron.
11
,
1217
1222
(
2010
).
7.
C.
Ge
,
M.
Lu
,
X.
Jian
,
Y.
Tan
, and
B. T.
Cunningham
, “
Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping
,”
Opt. Express
18
,
12980
12991
(
2010
).
8.
C.-C.
Chang
,
C.-L.
Pai
,
W.-C.
Chen
, and
S. A.
Jenekhe
, “
Spin coating of conjugated polymers for electronic and optoelectronic applications
,”
Thin Solid Films
479
,
254
(
2005
).
9.
P.
Calvert
, “
Inkjet printing for materials and devices
,”
Chem. Mater.
13
,
3299
3305
(
2001
).
10.
B.-J.
de Gans
,
P. C.
Duineveld
, and
U. S.
Schubert
, “
Inkjet printing of polymers: State of the art and future developments
,”
Adv. Mater.
16
,
203
213
(
2004
).
11.
M.
Singh
,
H. M.
Haverinen
,
P.
Dhagat
, and
G. E.
Jabbour
, “
Inkjet printing-process and its applications
,”
Adv. Mater.
22
,
673
685
(
2010
).
12.
T. R.
Hebner
,
C. C.
Wu
,
D.
Marcy
,
M. H.
Lu
, and
J. C.
Sturm
, “
Ink-jet printing of doped polymers for organic light emitting devices
,”
Appl. Phys. Lett.
72
,
519
(
1998
).
13.
H.
Sirringhaus
,
T.
Kawase
,
R. H.
Friend
,
T.
Shimoda
,
M.
Inbasekaran
,
W.
Wu
 et al., “
High-resolution inkjet printing of all-polymer transistor circuits
,”
Science
290
,
2123
2126
(
2000
).
14.
S.
Sanaur
,
A.
Whalley
,
B.
Alameddine
,
M.
Carnes
, and
C.
Nuckolls
, “
Jet-printed electrodes and semiconducting oligomers for elaboration of organic thin-film transistors
,”
Org. Electron.
7
,
423
427
(
2006
).
15.
C. N.
Hoth
,
S. A.
Choulis
,
P.
Schilinsky
, and
C. J.
Brabec
, “
High photovoltaic performance of inkjet printed polymer:fullerene blends
,”
Adv. Mater.
19
,
3973
3978
(
2007
).
16.
J.
Bharathan
and
Y.
Yang
, “
Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo
,”
Appl. Phys. Lett.
72
,
2660
(
1998
).
17.
E. M.
Lindh
,
A.
Sandström
, and
L.
Edman
, “
Inkjet printed bilayer light-emitting electrochemical cells for display and lighting applications
,”
Small
10
,
4148
4153
(
2014
).
18.
B.-J.
de Gans
and
U. S.
Schubert
, “
Inkjet printing of well-defined polymer dots and arrays
,”
Langmuir
20
,
7789
7793
(
2004
).
19.
D. J.
Gardiner
,
W.-K.
Hsiao
,
S. M.
Morris
,
P. J. W.
Hands
,
T. D.
Wilkinson
,
I. M.
Hutchings
 et al., “
Printed photonic arrays from self-organized chiral nematic liquid crystals
,”
Soft Matter
8
,
9977
(
2012
).
20.
D. J.
Gardiner
,
P. J. W.
Hands
,
S. M.
Morris
,
T. D.
Wilkinson
, and
H. J.
Coles
, “
Printed red-green-blue liquid crystal lasers
,” in
2012 Conference on Lasers and Electro-Optics (CLEO)
(
2012
), pp.
3
4
.
21.
X.
Liu
,
S.
Klinkhammer
,
K.
Sudau
,
N.
Mechau
,
C.
Vannahme
,
J.
Kaschke
,
T.
Mappes
,
M.
Wegener
, and
U.
Lemmer
, “
Ink-jet-printed organic semiconductor distributed feedback laser
,”
Appl. Phys. Express
5
,
3
5
(
2012
).
22.
X.
Liu
,
P.
Stefanou
,
B.
Wang
,
T.
Woggon
,
T.
Mappes
, and
U.
Lemmer
, “
Organic semiconductor distributed feedback (DFB) laser as excitation source in Raman spectroscopy
,”
Opt. Express
21
,
28941
28947
(
2013
).
23.
H.
Rabbani-Haghighi
,
S.
Forget
,
S.
Chénais
, and
A.
Siove
, “
Highly efficient, diffraction-limited laser emission from a vertical external-cavity surface-emitting organic laser
,”
Opt. Lett.
35
,
1968
1970
(
2010
).
24.
O.
Mhibik
,
T.
Leang
,
A.
Siove
,
S.
Forget
, and
S.
Chenais
, “
Broadly tunable (440–670 nm) solid-state organic laser with disposable capsules
,”
Appl. Phys. Lett.
102
,
41112
41114
(
2013
).
25.
S.
Forget
,
H.
Rabbani-Haghighi
,
N.
Diffalah
,
A.
Siove
, and
S.
Chenais
, “
Tunable ultraviolet vertically-emitting organic laser
,”
Appl. Phys. Lett.
98
,
131102
(
2011
).
26.
O.
Mhibik
,
S.
Forget
,
D.
Ott
,
I.
Divliansky
,
L.
Glebov
,
I.
Divliansky
, and
S.
Chénais
, “
An ultra-narrow linewidth solution-processed organic laser
,”
Light: Sci. Appl.
5
,
e16026
(
2016
).
27.
H.
Rabbani-Haghighi
,
S.
Forget
,
A.
Siove
, and
S.
Chénais
, “
Analytical study and performance optimization of vertical external cavity surface-emitting organic lasers
,”
Eur. Phys. J.: Appl. Phys.
(to be published).
28.
V. J.
Cadarso
,
J.
Perera-Nunez
,
L.
Jacot-Descombes
,
K.
Pfeiffer
,
U.
Ostrzinski
,
A.
Voigt
,
A.
Llobera
,
G.
Gruetzer
, and
J.
Brugger
, “
Microlenses with defined contour shapes
,”
Opt. Lett.
19
(
19
),
18665
18670
(
2011
).
29.
A. K.
Nallani
,
T.
Chen
,
D. J.
Hayes
,
W. S.
Che
, and
J. B.
Lee
, “
A method for improved VCSEL packaging using MEMS and ink-jet technologies
,”
J. Lightwave Technol.
24
,
1504
1512
(
2006
).
30.
D. J.
Hayes
,
W. R.
Cox
, and
D. B.
Wallace
, “
Printing system for MEMS packaging
,”
Proc. SPIE
4558
,
206
214
(
2001
).
31.
W. R.
Cox
,
T.
Chen
, and
D. J.
Hayes
, “
Micro-optics fabrication by ink-jet printers
,”
Opt. Photonics News
12
,
32
(
2001
).
32.
D. J.
Hayes
,
T.
Chen
, and
D.
Wallace
, “
Digital printing of optical components
,”
Polymer (Guildf)
,
183
186
(
2006
).
33.
V.
Fakhfouri
,
G.
Mermoud
,
J.
Kim
,
A.
Martinoli
, and
J.
Brugger
, “
Drop-on-demand inkjet printing of SU-8 polymer
,”
Micro Nanosyst.
1
,
63
67
(
2009
).
34.
W.-H.
Liao
and
G.-D. J.
Su
, “
Multi-channel compact optical zoom module by using microlenses
,”
Proc. SPIE
9580
,
95800K-1
95800K-20
(
2015
).
35.
C.
Vannahme
,
S.
Klinkhammer
,
A.
Kolew
,
P.-J.
Jakobs
,
M.
Guttmann
,
S.
Dehm
 et al., “
Integration of organic semiconductor lasers and single-mode passive waveguides into a PMMA substrate
,”
Microelectron. Eng.
87
,
693
695
(
2010
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4946826 for movie no. 1 (Multimedia view); for movie no. 2 (Multimedia view); to have a look on the jetting waveform; to see AFM scan; to look onto the roughness data; Transmittance spectrum of the EMD 6415 ink; and ellipsometry data and fit from EMD 6415 thin film: amplitude ratio, phase ratio and calculated refractive index as a function of the wavelength (nm).
37.
J. C.
de Mello
,
H. F.
Wittmann
, and
R. H.
Friend
, “
An improved experimental determination of external photoluminescence quantum efficiency
,”
Adv. Mater.
9
,
230
232
(
1997
).

Supplementary Material

You do not currently have access to this content.