An experimental study is conducted on the possibility and viability of performing hardness measurement of the various stone and chert samples in low pressure (600 Pa) CO2 ambient gas, a condition that is encountered in the Mars atmosphere. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from the samples with different degrees of hardness. This technique is developed in light of the role of the shock wave in the generation of a laser-induced plasma. It was previously shown that the speed of the shock front depends on the hardness of the sample, and a positive relationship was found between the speed of the shock front and the ionization rate of the ablated atoms. Hence, the ratio of the intensity between the Mg II 279.5 nm and Mg I 285.2 nm emission lines detected from the laser-induced plasma can be used to estimate the hardness of a material. In fact, it is shown that the ratio changes linearly with respect to changes of sample hardness. The result has thus demonstrated the feasibility and viability of using LIBS for non contact hardness measurement on Mars.

1.
A. W.
Miziolek
,
V.
Palleschi
, and
I.
Schechter
,
Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications
(
Cambridge University Press
,
Cambridge
,
2006
).
2.
A. J.
Effenberger
, Jr.
and
J. R.
Scott
, “
Effect of atmospheric conditions on LIBS spectra
,”
Sensors
10
,
4907
4925
(
2010
).
3.
R.
Sattman
,
I.
Monch
,
H.
Krause
,
R.
Noll
,
S.
Couris
,
A.
Hatziapostolou
,
A.
Mavromanolakis
,
C.
Fotakis
,
E.
Larrauri
, and
R.
Miguel
, “
Laser-induced breakdown spectroscopy for polymer identification
,”
Appl. Spectrosc.
52
,
456
461
(
1998
).
4.
M. A.
Ismail
,
G.
Cristoforetti
,
S.
Legnaioli
,
L.
Pardini
,
V.
Palleschi
,
A.
Salvetti
,
E.
Tognoni
, and
M. A.
Harith
, “
Comparison of detection limit, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations
,”
Anal. Bioanal. Chem.
385
,
316
325
(
2006
).
5.
Z. Z.
Wang
,
Y.
Deguchi
,
M.
Kuwahara
,
J. J.
Yan
, and
J. P.
Liu
, “
Enhancement of laser-induced breakdown spectroscopy (LIBS) detection limit using a low-pressure and short-pulse laser-induced plasma process
,”
Appl. Spectrosc.
67
,
1242
1251
(
2013
).
6.
K. H.
Kurniawan
,
M. O.
Tjia
, and
K.
Kagawa
, “
Review of laser induced plasma, its mechanism and application to quantitative analysis of hydrogen and deuterium
,”
Appl. Spectrosc. Rev.
49
,
323
434
(
2014
).
7.
K. H.
Kurniawan
,
Y.
Ishikawa
,
S.
Nakajima
, and
K.
Kagawa
, “
Characteristics of the secondary plasma induced by focusing a 10 mJ XeCl laser pulse at low pressures
,”
Appl. Spectrosc.
51
,
1769
1780
(
1997
).
8.
Ph.
Rohwetter
,
J.
Yu
,
G.
Mejean
,
K.
Stelmaszczyk
,
E.
Salmon
,
J.
Kasparian
,
J. P.
Wolf
, and
L.
Woste
, “
Remote LIBS with ultrashort pulses: Characteristics in picosecond and femtosecond regimes
,”
J. Anal. At. Spectrom.
19
,
437
444
(
2004
).
9.
N. L.
Lanza
,
R. C.
Wiens
,
S. M.
Clegg
,
A. M.
Ollila
,
S. D.
Humphries
,
H. E.
Newsom
, and
J. E.
Barefield
, “
Calibrating the ChemCam laser-induced breakdown spectroscopy instrument for carbonate minerals on Mars
,”
Appl. Opt.
49
,
C211
C217
(
2010
).
10.
NASA Images Suggest Water Still Flows in Brief Spurts on Mars, NASA/JPL, Dec. 6,
2006
report.
11.
M. D.
Dyar
,
J. M.
Tucker
,
S.
Humphries
,
S. M.
Clegg
,
R. C.
Wiens
, and
M. D.
Lane
, “
Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples
,”
Spectrochim. Acta B
66
,
39
56
(
2011
).
12.
S.
Maurice
,
R.
Wiens
,
G.
Manhes
,
D.
Cremers
,
B.
Barraclough
,
J.
Bernardin
,
M.
Bouye
,
A.
Cros
,
B.
Dubois
,
E.
Durand
,
S.
Hahn
,
D.
Kouach
,
J. L.
Lacour
,
D.
Landis
,
T.
Moore
,
L.
Pares
,
J.
Platzer
,
M.
Soccoccio
,
B.
Salle
, and
R.
Whitaker
, “
ChemCam instrument for the Mars Science Laboratory (MSL) Rover
,”
Lunar Planet. Sci.
2005
,
1735
.
13.
R. S.
Wiens
,
S.
Maurice
,
B.
Bridges
,
B.
Clark
,
D.
Cremers
,
K.
Herkenhoff
,
I.
Kirkland
,
N.
Mangold
,
G.
Manhes
,
P.
Mauchien
,
C.
McKay
,
H.
Newsom
,
F.
Poltrasson
,
V.
Sauter
,
L.
d'Uston
,
D.
Vaniman
, and
S.
Shipp
, “
ChemCam science objectives for the Mars Science Laboratory (MSL) Rover
,”
Lunar Planet. Sci.
2005
,
1580
.
14.
S. M.
Clegg
,
E. C.
Sklutte
,
M. D.
Dyar
,
J. E.
Barefield
, and
R. C.
Wiens
, in
7th International Conference on Mars
, Pasadena, CA,
2007
, Abstract #3216.
15.
B.
Salle
,
J. L.
Lacour
,
E.
Vors
,
P.
Fichet
,
S.
Maurice
,
D. A.
Cremers
, and
R. C.
Wiens
, “
Laser-induced breakdown spectroscopy for Mars surface analysis: Capabilities at standoff distances and detection of chlorine and surfur elements
,”
Spectrochim. Acta Part B
59
,
1413
1422
(
2004
).
16.
H. Y.
McSween
, Jr.
, “
SNC meteorites: Clues to Martian petrologic evolution?
Rev. Geophys.
23
,
391
416
, doi:, doi: (
1985
).
17.
J. L.
Gooding
, “
Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites
,”
Icarus
99
,
28
41
(
1992
).
18.
Z. S.
Lie
,
M.
Pardede
,
M. O.
Tjia
,
K. H.
Kurniawan
, and
K.
Kagawa
, “
Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars
,”
J. Appl. Phys.
118
,
083304-1
6
(
2015
).
19.
M. J.
Zucrow
and
J. D.
Hoffman
,
Gas Dynamics
(
John Wiley and Sons
,
New York
,
1976
), p.
349
.
20.
K.
Tsuyuki
,
S.
Miura
,
N.
Idris
,
K. H.
Kurniawan
,
T. J.
Lie
, and
K.
Kagawa
, “
Measurement of concrete strength using the emission intensity ratio between Ca (II) 396.8 nm and Ca (I) 422.6 nm in a Nd:YAG laser-induced plasma
,”
Appl. Spectrosc.
60
,
61
64
(
2006
).
You do not currently have access to this content.