We report the results of a systematic study of the interplay of triplet-polaron quenching (TPQ) and triplet-triplet annihilation (TTA) on the efficiency roll-off of organic light-emitting diodes (OLEDs) with increasing current density. First, we focus on OLEDs based on the green phosphorescent emitter tris[2-phenylpyridine]iridium(III) (Ir(ppy)3) and the red phosphorescent dye platinum octaethylporphyrin. It is found that the experimental data can be reproduced using kinetic Monte Carlo (kMC) simulations within which TPQ and TTA are due to a nearest-neighbor (NN) interaction, or due to a more long-range Förster-type process. Furthermore, we find a subtle interplay between TPQ and TTA: decreasing the contribution of one process can increase the contribution of the other process, so that the roll-off is not significantly reduced. Furthermore, we find that just analyzing the shape of the roll-off is insufficient for determining the relative role of TPQ and TTA. Subsequently, we investigate the wider validity of this picture using kMC simulations for idealized but realistic symmetric OLEDs, with an emissive layer containing a small concentration of phosphorescent dye molecules in a matrix material. Whereas for NN-interactions the roll-off can be reduced when the dye molecules act as shallow hole and electron traps, we find that such an approach becomes counterproductive for long-range TTA and TPQ. Developing well-founded OLED design rules will thus require that more quantitative information is available on the rate and detailed mechanism of the TPQ and TTA processes.

1.
M. A.
Baldo
,
C.
Adachi
, and
S. R.
Forrest
, “
Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation
,”
Phys. Rev. B
62
(
16
),
10967
10977
(
2000
).
2.
S.
Reineke
,
K.
Walzer
, and
K.
Leo
, “
Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters
,”
Phys. Rev. B
75
(
12
),
125328
(
2007
).
3.
F. X.
Zang
,
T. C.
Sum
,
A. C. H.
Huan
,
T. L.
Li
,
W. L.
Li
, and
F.
Zhu
, “
Reduced efficiency roll-off in phosphorescent organic light emitting diodes at ultrahigh current densities by suppression of triplet-polaron quenching
,”
Appl. Phys. Lett.
93
(
2
),
023309
(
2008
).
4.
N. C.
Giebink
and
S. R.
Forrest
, “
Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes
,”
Phys. Rev. B
77
(
23
),
235215
(
2008
).
5.
D.
Song
,
S.
Zhao
,
Y.
Luo
, and
H.
Aziz
, “
Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching
,”
Appl. Phys. Lett.
97
(
24
),
243304
(
2010
).
6.
C.
Murawski
,
K.
Leo
, and
M. C.
Gather
, “
Efficiency roll-off in organic light-emitting diodes
,”
Adv. Mater.
25
(
47
),
6801
6827
(
2013
).
7.
D. L.
Dexter
, “
A theory of sensitized luminescence in solids
,”
J. Chem. Phys.
21
(
5
),
836
850
(
1953
).
8.
Th.
Förster
, “
Zwischenmolekulare energiewanderung und fluoreszenz
,”
Ann. Phys.
437
(
1–2
),
55
75
(
1948
).
9.
Y.
Zhang
and
S. R.
Forrest
, “
Triplet diffusion leads to triplet-triplet annihilation in organic phosphorescent emitters
,”
Chem. Phys. Lett.
590
,
106
110
(
2013
).
10.
W.
Staroske
,
M.
Pfeiffer
,
K.
Leo
, and
M.
Hoffmann
, “
Single-step triplet-triplet annihilation: An intrinsic limit for the high brightness efficiency of phosphorescent organic light emitting diodes
,”
Phys. Rev. Lett.
98
(
19
),
197402
(
2007
).
11.
M.
Mesta
,
H.
van Eersel
,
R.
Coehoorn
, and
P. A.
Bobbert
, “
Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white oled
Appl. Phys. Lett.
108
,
133301
(
2016
).
12.
D. Y.
Kondakov
,
T. D.
Pawlik
,
T. K.
Hatwar
, and
J. P.
Spindler
, “
Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes
,”
J. Appl. Phys.
106
(
12
),
124510
(
2009
).
13.
S.
Wehrmeister
,
L.
Jäger
,
T.
Wehlus
,
A. F.
Rausch
,
T. C. G.
Reusch
,
T. D.
Schmidt
, and
W.
Brütting
, “
Combined electrical and optical analysis of the efficiency roll-off in phosphorescent organic light-emitting diodes
,”
Phys. Rev. Appl.
3
(
2
),
024008
(
2015
).
14.
Y.
Shen
and
N. C.
Giebink
, “
Monte Carlo simulations of nanoscale electrical inhomogeneity in organic light-emitting diodes and its impact on their efficiency and lifetime
,”
Phys. Rev. Appl.
4
(
5
),
054017
(
2015
).
15.
H.
van Eersel
,
P. A.
Bobbert
, and
R.
Coehoorn
, “
Kinetic Monte Carlo study of triplet-triplet annihilation in organic phosphorescent emitters
,”
J. Appl. Phys.
117
(
11
),
115502
(
2015
).
16.
H.
van Eersel
,
P. A.
Bobbert
,
R. A. J.
Janssen
, and
R.
Coehoorn
, “
Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching
,”
Appl. Phys. Lett.
105
(
14
),
143303
(
2014
).
17.
R.
Coehoorn
,
H.
van Eersel
,
P. A.
Bobbert
, and
R. A. J.
Janssen
, “
Kinetic Monte Carlo study of the sensitivity of OLED efficiency and lifetime to materials parameters
,”
Adv. Funct. Mater.
25
(
13
),
2024
2037
(
2015
).
18.
D.
Hertel
and
K.
Meerholz
, “
Triplet-polaron quenching in conjugated polymers
,”
J. Phys. Chem. B
111
(
42
),
12075
12080
(
2007
).
19.
A.
Köhler
and
H.
Bässler
, “
Triplet states in organic semiconductors
,”
Mater. Sci. Eng., R
66
(
4–6
),
71
109
(
2009
).
20.
Y.
Kawamura
,
J.
Brooks
,
J. J.
Brown
,
H.
Sasabe
, and
C.
Adachi
, “
Intermolecular interaction and a concentration-quenching mechanism of phosphorescent Ir(III) complexes in a solid film
,”
Phys. Rev. Lett.
96
(
1
),
017404
(
2006
).
21.
The Bumblebee software is provided by Simbeyond B.V., see http://simbeyond.com.
22.
M.
Mesta
,
M.
Carvelli
,
R. J.
de Vries
,
H.
van Eersel
,
J. J. M.
van der Holst
,
M.
Schober
,
M.
Furno
,
B.
Lüssem
,
K.
Leo
,
P.
Loebl
,
R.
Coehoorn
, and
P. A.
Bobbert
, “
Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode
,”
Nat. Mater.
12
(
7
),
652
658
(
2013
).
23.
A.
Miller
and
E.
Abrahams
, “
Impurity conduction at low concentrations
,”
Phys. Rev.
120
(
3
),
745
755
(
1960
).
24.
S. L. M.
van Mensfoort
,
V.
Shabro
,
R. J.
de Vries
,
R. A. J.
Janssen
, and
R.
Coehoorn
, “
Hole transport in the organic small molecule material α-NPD: evidence for the presence of correlated disorder
,”
J. Appl. Phys.
107
(
11
),
113710
113710–8
(
2010
).
25.
H.
Yoshida
and
K.
Yoshizaki
, “
Electron affinities of organic materials used for organic light-emitting diodes: A low-energy inverse photoemission study
,”
Org. Electron.
20
,
24
30
(
2015
).
26.
S.
Mladenovski
,
S.
Reineke
, and
K.
Neyts
, “
Measurement and simulation of exciton decay times in organic light-emitting devices with different layer structures
,”
Opt. Lett.
34
(
9
),
1375
1377
(
2009
).
27.
A. K.
Bansal
,
A.
Penzkofer
,
W.
Holzer
, and
T.
Tsuboi
, “
Photodynamics of OLED triplet emitters Ir(ppy)3 and PtOEP
,”
Mol. Cryst. Liq. Cryst.
467
(
1
),
21
31
(
2007
).
28.
Y.
Kawamura
,
K.
Goushi
,
J.
Brooks
,
J. J.
Brown
,
H.
Sasabe
, and
C.
Adachi
, “
100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films
,”
Appl. Phys. Lett.
86
(
7
),
071104
(
2005
).
29.
A. K.
Bansal
,
W.
Holzer
,
A.
Penzkofer
, and
T.
Tsuboi
, “
Absorption and emission spectroscopic characterization of platinum-octaethyl-porphyrin (PtOEP)
,”
Chem. Phys.
330
(
1–2
),
118
129
(
2006
).
30.
T. L.
Keevers
and
D. R.
McCamey
, “
Theory of triplet-triplet annihilation in optically detected magnetic resonance
,”
Phys. Rev. B
93
,
045210
(
2016
).
31.
Th.
Förster
, “
Reduced efficiency roll-off in phosphorescent organic light emitting diodes at ultrahigh current densities by suppression of triplet-polaron quenching
,”
Discuss. Faraday Soc.
27
,
7
17
(
1959
).
32.
M.
Furno
,
R.
Meerheim
,
S.
Hofmann
,
B.
Lüssem
, and
K.
Leo
, “
Efficiency and rate of spontaneous emission in organic electroluminescent devices
,”
Phys. Rev. B
85
,
115205
(
2012
).
33.
M. A.
Baldo
,
R. J.
Holmes
, and
S. R.
Forrest
, “
Prospects for electrically pumped organic lasers
,”
Phys. Rev. B
66
(
3
),
035321
(
2002
).
34.
M.
Lehnhardt
,
Th.
Riedl
,
U.
Scherf
,
T.
Rabea
, and
W.
Kowalsky
, “
Spectrally separated optical gain and triplet absorption: Towards continuous wave lasing in organic thin film lasers
,”
Org. Electron.
12
,
1346
1351
(
2011
).
You do not currently have access to this content.