Temperature-dependent dielectric relaxations of (1 − x)BiFeO3-x(Bi1/2K1/2)TiO3 (BF-BKT) lead-free piezoceramics (0.4 ≤ x ≤ 0.8) were investigated via impedance spectroscopic techniques. Regardless of the compositions, the dielectric maximum temperatures exhibit a frequency-dependent dispersion, originating from a Debye relaxation due to the presence of oxygen vacancies. It was also observed that there exist local dielectric maxima due to the relaxation of polar nanoregions as a shoulder on the lower temperature side. The onset temperature for the Debye-type relaxation decreased with decreasing BKT content, gradually overlapping with the low-temperature dielectric dispersion from the relaxation of polar nanoregions. It is proposed that the role of BKT in the BF-BKT system is to enhance the random fields that favor a relaxor state and to suppress the Debye-type relaxation of oxygen vacancy related dipoles.

1.
W.
Eerenstein
,
N.
Mathur
, and
J. F.
Scott
,
Nature
442
(
7104
),
759
(
2006
).
2.
G.
Catalan
and
J. F.
Scott
,
Adv. Mater.
21
(
24
),
2463
(
2009
).
3.
Y.
Hiruma
,
R.
Aoyagi
,
H.
Nagata
, and
T.
Takenaka
,
Jpn. J. Appl. Phys., Part 1
44
(
7R
),
5040
(
2005
).
4.
M.
Otoničar
,
S. D.
Škapin
,
B.
Jančar
,
R.
Ubic
, and
D.
Suvorov
,
J. Am. Ceram. Soc.
93
(
12
),
4168
(
2010
).
5.
H.
Matsuo
,
Y.
Noguchi
,
M.
Miyayama
,
M.
Suzuki
,
A.
Watanabe
,
S.
Sasabe
,
T.
Ozaki
,
S.
Mori
,
S.
Torii
, and
T.
Kamiyama
,
J. Appl. Phys.
108
(
10
),
104103
(
2010
).
6.
M. I.
Morozov
,
M.-A.
Einarsrud
, and
T.
Grande
,
Appl. Phys. Lett.
101
(
25
),
252904
(
2012
).
7.
J. M.
Kim
,
Y. S.
Sung
,
J. H.
Cho
,
T. K.
Song
,
M. H.
Kim
,
H. H.
Chong
,
T. G.
Park
,
D.
Do
, and
S. S.
Kim
,
Ferroelectrics
404
(
1
),
88
(
2010
).
8.
D.
Lin
,
Q.
Zheng
,
Y.
Li
,
Y.
Wan
,
Q.
Li
, and
W.
Zhou
,
J. Eur. Ceram. Soc.
33
(
15
),
3023
(
2013
).
9.
J.
Bennett
,
A. J.
Bell
,
T. J.
Stevenson
,
R. I.
Smith
,
I.
Sterianou
,
I. M.
Reaney
, and
T. P.
Comyn
,
Mater. Lett.
94
,
172
(
2013
).
10.
J. H.
Choi
,
J. S.
Kim
, and
C. I.
Cheon
,
J. Korean Phys. Soc.
65
(
3
),
382
(
2014
).
11.
A. V.
Pushkarev
,
N. M.
Olekhnovich
, and
Y. V.
Radyush
,
Inorg. Mater.
47
(
7
),
774
(
2011
).
12.
M. I.
Morozov
,
M.-A.
Einarsrud
,
T.
Grande
, and
D.
Damjanovic
,
Ferroelectrics
439
(
1
),
88
(
2012
).
13.
M. I.
Morozov
,
M.-A.
Einarsrud
, and
T.
Grande
,
J. Appl. Phys.
115
(
4
),
044104
(
2014
).
14.
L. E.
Cross
,
Ferroelectrics
76
(
1
),
241
(
1987
).
15.
G.
Catalan
,
D.
O'Neill
,
R. M.
Bowman
, and
J. M.
Gregg
,
Appl. Phys. Lett.
77
(
19
),
3078
(
2000
).
16.
G.-Z.
Liu
,
C.
Wang
,
C.-C.
Wang
,
J.
Qiu
,
M.
He
,
J.
Xing
,
K.-J.
Jin
,
H.-B.
Lu
, and
G.-Z.
Yang
,
Appl. Phys. Lett.
92
(
12
),
122903
(
2008
).
17.
C. C.
Wang
and
S. X.
Dou
,
Solid State Commun.
149
(
45
),
2017
(
2009
).
18.
M.
Li
,
D. C.
Sinclair
, and
A. R.
West
,
J. Appl. Phys.
109
(
8
),
084106
(
2011
).
19.
N.
Raengthon
and
D. P.
Cann
,
J. Am. Ceram. Soc.
95
(
5
),
1604
(
2012
).
20.
R.
Stumpe
,
D.
Wagner
, and
D.
Bäuerle
,
Phys. Status Solidi A
75
(
1
),
143
(
1983
).
21.
O.
Bidault
,
P.
Goux
,
M.
Kchikech
,
M.
Belkaoumi
, and
M.
Maglione
,
Phys. Rev. B
49
(
12
),
7868
(
1994
).
22.
C.
Ang
,
Z.
Yu
, and
L.
Cross
,
Phys. Rev. B
62
(
1
),
228
(
2000
).
23.
B. S.
Kang
,
S. K.
Choi
, and
C. H.
Park
,
J. Appl. Phys.
94
(
3
),
1904
(
2003
).
24.
S. K.
Choi
,
B. S.
Kang
,
Y. W.
Cho
, and
Y. M.
Vysochanskii
,
J. Electroceram.
13
(
1–3
),
493
(
2004
).
25.
Z.
Wang
,
X. M.
Chen
,
L.
Ni
,
Y. Y.
Liu
, and
X. Q.
Liu
,
Appl. Phys. Lett.
90
(
10
),
102905
(
2007
).
26.
C.-C.
Wang
,
M.-N.
Zhang
,
K.-B.
Xu
, and
G.-J.
Wang
,
J. Appl. Phys.
112
(
3
),
034109
(
2012
).
27.
C.
Wang
,
M.
Zhang
, and
W.
Xia
,
J. Am. Ceram. Soc.
96
(
5
),
1521
(
2013
).
28.
J. T.
Irvine
,
D. C.
Sinclair
, and
A. R.
West
,
Adv. Mater.
2
(
3
),
132
(
1990
).
29.
A. R.
West
,
D. C.
Sinclair
, and
N.
Hirose
,
J. Electroceram.
1
(
1
),
65
(
1997
).
30.
J.
East
and
D. C.
Sinclair
,
J. Mater. Sci. Lett.
16
(
6
),
422
(
1997
).
31.
A.
Hussain
,
J. S.
Lee
,
C. W.
Ahn
,
J. S.
Kim
,
A.
Ullah
, and
I. W.
Kim
,
J. Korean Phys. Soc.
57
(
4
),
1106
(
2010
).
32.
J.
Zang
,
M.
Li
,
D. C.
Sinclair
,
W.
Jo
, and
J.
Rödel
,
J. Am. Ceram. Soc.
97
(
5
),
1523
(
2014
).
33.
J.
Zang
,
M.
Li
,
D. C.
Sinclair
,
T.
Frömling
,
W.
Jo
, and
J.
Rödel
,
J. Am. Ceram. Soc.
97
(
9
),
2825
(
2014
).
34.
A.
Bokov
and
Z.-G.
Ye
,
J. Adv. Dielectr.
2
,
1241010
(
2012
).
35.
V. V.
Shvartsman
and
D. C.
Lupascu
,
J. Am. Ceram. Soc.
95
,
1
(
2012
).
36.
D.
Viehland
,
S. J.
Jang
,
L. E.
Cross
, and
M.
Wuttig
,
J. Appl. Phys.
68
,
2916
(
1990
).
37.
W.
Jo
,
J.
Daniels
,
D.
Damjanovic
,
W.
Kleemann
, and
J.
Rödel
,
Appl. Phys. Lett.
102
(
19
),
192903
(
2013
).
38.
T.
Tsurumi
,
K.
Soejima
,
T.
Kamiya
, and
M.
Daimon
,
Jpn. J. Appl. Phys., Part 1
33
,
1959
(
1994
).
39.
I. M.
Hodge
,
M. D.
Ingram
, and
A. R.
West
,
J. Electroanal. Chem. Interfacial Electrochem.
74
(
2
),
125
(
1976
).
You do not currently have access to this content.