Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO2 core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Sin+, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. In this work, Si-SiO2 NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO2 transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.

1.
H.
Huff
,
Into the Nano Era: Moore's Law Beyond Planar Silicon CMOS
, Springer Series Mate (
Springer
,
Berlin Heidelberg
,
2008
).
2.
L.
Brus
,
J. Phys. Chem.
90
,
2555
(
1986
).
3.
J.
Derr
,
K.
Dunn
,
D.
Riabinina
,
F.
Martin
,
M.
Chaker
, and
F.
Rosei
,
Physica E
41
,
668
(
2009
).
4.
V.
Kumar
,
K.
Saxena
, and
A.
Shukla
,
IET Micro Nano Lett.
8
,
311
(
2013
).
5.
E. G.
Barbagiovanni
,
D. J.
Lockwood
,
P. J.
Simpson
, and
L. V.
Goncharova
,
J. Appl. Phys.
111
,
034307
(
2012
).
6.
J. R.
Chen
,
D. C.
Wang
,
H. C.
Hao
, and
M.
Lu
,
Appl. Phys. Lett.
104
,
061105
(
2014
).
7.
M.
Kořínek
,
F.
Trojánek
,
D.
Hiller
,
S.
Gutsch
,
M.
Zacharias
, and
P.
Malỳ
,
J. Appl. Phys.
117
,
093101
(
2015
).
8.
D.
Kovalev
and
M.
Fujii
,
Adv. Mater.
17
,
2531
(
2005
).
9.
M.
Balaguer
and
E.
Matveeva
,
J. Nanopart. Res.
12
,
2907
(
2010
).
10.
L.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
11.
T.
Arguirov
,
T.
Mchedlidze
,
M.
Kittler
,
R.
Rölver
,
B.
Berghoff
,
M.
Först
, and
B.
Spangenberg
,
Appl. Phys. Lett.
89
,
053111
(
2006
).
12.
C. M.
Hessel
,
J.
Wei
,
D.
Reid
,
H.
Fujii
,
M. C.
Downer
, and
B. A.
Korgel
,
J. Phys. Chem. Lett.
3
,
1089
(
2012
).
13.
R.
Pereira
,
D.
Rowe
,
R.
Anthony
, and
U.
Kortshagen
,
Phys. Rev. B
83
,
155327
(
2011
).
14.
J. A. L.
López
,
J. C.
López
,
D. V.
Valerdi
,
G. G.
Salgado
,
T.
Díaz Becerril
,
A. P.
Pedraza
, and
F. F.
Gracia
,
Nanoscale Res. Lett.
7
,
604
(
2012
).
15.
X.
Chen
,
X.
Pi
, and
D.
Yang
,
J. Phys. Chem. C
114
,
8774
(
2010
).
16.
W.
Zhang
,
S.
Zhang
,
Y.
Liu
, and
T.
Chen
,
J. Cryst. Growth
311
,
1296
(
2009
).
17.
F.
Himpsel
,
F.
McFeely
,
A.
Taleb Ibrahimi
,
J.
Yarmoff
, and
G.
Hollinger
,
Phys. Rev. B
38
,
6084
(
1988
).
18.
A.
Nurbawono
,
S.
Liu
, and
C.
Zhang
,
J. Chem. Phys.
142
,
154705
(
2015
).
19.
G.
Seguini
,
C.
Castro
,
S.
Schamm Chardon
,
G.
BenAssayag
,
P.
Pellegrino
, and
M.
Perego
,
Appl. Phys. Lett.
103
,
023103
(
2013
).
20.
A.
Puzder
,
A.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
Phys. Rev. Lett.
88
,
097401
(
2002
).
21.
P.
Carrier
,
Phys. Rev. B
80
,
075319
(
2009
).
22.
E. W.
Draeger
,
J. C.
Grossman
,
A. J.
Williamson
, and
G.
Galli
,
J. Chem. Phys.
120
,
10807
(
2004
).
23.
Y.
Shu
and
B. G.
Levine
,
J. Phys. Chem. C
119
,
1737
(
2015
).
24.
S.
Chopra
and
B.
Rai
,
J. Nanostruct. Chem.
5
,
195
(
2015
).
25.
A.
Puzder
,
A.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
J. Chem. Phys.
117
,
6721
(
2002
).
26.
Z.
Zhou
,
L.
Brus
, and
R.
Friesner
,
Nano Lett.
3
,
163
(
2003
).
27.
H.
Dong
,
T.
Hou
,
X.
Sun
,
Y.
Li
, and
S. T.
Lee
,
Appl. Phys. Lett.
103
,
123115
(
2013
).
28.
P.
Kroll
and
H. J.
Schulte
,
Phys. Status Solidi B
243
,
R47
(
2006
).
29.
M.
Wolkin
,
J.
Jorne
,
P.
Fauchet
,
G.
Allan
, and
C.
Delerue
,
Phys. Rev. Lett.
82
,
197
(
1999
).
30.
T.
Ye Liao
,
Z.
Yu Hua
,
Z.
Jun
,
X.
Chun Lai
,
C.
Bu Wen
,
W.
Qi Ming
, and
X.
Jun
,
Chin. Phys. B
21
,
077402
(
2012
).
31.
D. E.
Yilmaz
,
C.
Bulutay
, and
T.
Çağin
,
Appl. Phys. Lett.
94
,
191914
(
2009
).
32.
F.
Rochet
,
C.
Poncey
,
G.
Dufour
,
H.
Roulet
,
C.
Guillot
, and
F.
Sirotti
,
J. Non-Cryst. Solids
216
,
148
(
1997
).
33.
J.
Oh
,
H.
Yeom
,
Y.
Hagimoto
,
K.
Ono
,
M.
Oshima
,
N.
Hirashita
,
M.
Nywa
,
A.
Toriumi
, and
A.
Kakizaki
,
Phys. Rev. B
63
,
205310
(
2001
).
34.
P.
Carrier
,
Z.-H.
Lu
,
L.
Lewis
, and
M.
Dharma-wardana
,
Appl. Surf. Sci.
212
,
826
(
2003
).
35.
A.
Pasquarello
,
M. S.
Hybertsen
, and
R.
Car
,
Appl. Surf. Sci.
104
,
317
(
1996
).
36.
N.
Tit
and
M.
Dharma Wardana
,
J. Appl. Phys.
86
,
387
(
1999
).
37.
A. J.
Williamson
,
J. C.
Grossman
,
R. Q.
Hood
,
A.
Puzder
, and
G.
Galli
,
Phys. Rev. Lett.
89
,
196803
(
2002
).
38.
F.
Djurabekova
and
K.
Nordlund
,
Phys. Rev. B
77
,
115325
(
2008
).
39.
M.
Luppi
and
S.
Ossicini
,
Phys. Status Solidi A
197
,
251
(
2003
).
40.
Z.
Huiwen
,
L.
Yongsong
,
M.
Lingfeng
,
S.
Jingqin
,
Z.
Zhiyan
, and
T.
Weihua
,
J. Semicond.
31
,
082003
(
2010
).
41.
R.
Guerra
,
I.
Marri
,
R.
Magri
,
L.
Martin-Samos
,
O.
Pulci
,
E.
Degoli
, and
S.
Ossicini
,
Phys. Rev. B
79
,
155320
(
2009
).
42.
N. A.
Nama
,
M. A.
Abdulsattar
, and
A. M.
Abdolletif
,
J. Nanomater.
2010
,
952172
.
43.
Y.
Matsumoto
,
A.
Dutt
,
G.
Santana Rodríguez
,
J.
Santoyo Salazar
, and
M.
Aceves Mijares
,
Appl. Phys. Lett.
106
,
171912
(
2015
).
44.
N.
Daldosso
,
M.
Luppi
,
S.
Ossicini
,
E.
Degoli
,
R.
Magri
,
G.
Dalba
,
P.
Fornasini
,
R.
Grisenti
,
F.
Rocca
,
L.
Pavesi
 et al.,
Phys. Rev. B
68
,
085327
(
2003
).
45.
T. J.
Pennycook
,
G.
Hadjisavvas
,
J. C.
Idrobo
,
P. C.
Kelires
, and
S. T.
Pantelides
,
Phys. Rev. B
82
,
125310
(
2010
).
46.
G. H.
Lu
,
M.
Huang
,
M.
Cuma
, and
F.
Liu
,
Surf. Sci.
588
,
61
(
2005
).
47.
A.
Puzder
,
A.
Williamson
,
F.
Reboredo
, and
G.
Galli
,
Phys. Rev. Lett.
91
,
157405
(
2003
).
48.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garcia
,
J.
Junquera
,
P.
Ordejon
, and
D.
Sanchez Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
49.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
50.
E. J.
Santos
and
E.
Kaxiras
,
ACS Nano
7
,
10741
(
2013
).
51.
A.
Piróth
and
J.
Sólyom
,
Fundamentals of the Physics of Solids: Volume II: Electronic Properties
, Fundamentals of the Physics of Solids (
Springer
,
Berlin, Heidelberg
,
2008
).
52.
G.
Nazir
,
A.
Ahmad
,
M. F.
Khan
, and
S.
Tariq
,
Comput. Condens. Matter
4
,
32
(
2015
).
53.
V.
Kocevski
,
O.
Eriksson
, and
J.
Rusz
,
Phys. Rev. B
87
,
245401
(
2013
).
54.
I.
Vasiliev
,
S.
Ögüt
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
86
,
1813
(
2001
).
55.
S.
Pantelides
,
Proceedings of the International Topical Conference on the Physics of SiO2 and its Interfaces
(
Elsevier
,
Yorktown Heights, New York
,
1978
).
56.
D. E.
Aspnes
and
A. A.
Studna
,
Phys. Rev. B
27
,
985
(
1983
).
57.
D.
Yu
,
S.
Lee
, and
G. S.
Hwang
,
J. Appl. Phys.
102
,
084309
(
2007
).
58.
Z.
Ma
,
X.
Liao
,
G.
Kong
, and
J.
Chu
,
Appl. Phys. Lett.
75
,
1857
(
1999
).
59.
G.
Zatryb
,
J.
Misiewicz
,
P.
Wilson
,
J.
Wojcik
,
P.
Mascher
, and
A.
Podhorodecki
,
Thin Solid Films
571
,
18
(
2014
).
60.
G.
Hadjisavvas
and
P.
Kelires
,
Physica E
38
,
99
(
2007
).
61.
G.
Hadjisavvas
and
P.
Kelires
,
Phys. Rev. Lett.
93
,
226104
(
2004
).
62.
Y.
Tu
and
J.
Tersoff
,
Phys. Rev. Lett.
84
,
4393
(
2000
).
63.
Y.
Tu
and
J.
Tersoff
,
Phys. Rev. Lett.
89
,
086102
(
2002
).
64.
A.
Bongiorno
,
A.
Pasquarello
,
M. S.
Hybertsen
, and
L.
Feldman
,
Phys. Rev. Lett.
90
,
186101
(
2003
).
65.
A. K.
Jain
,
L.
Hong
, and
S.
Pankanti
, “
Localized excitations in amorphous silicon alloys
,”
Technical Report No. DE93001790
(Technical Information Center Oak Ridge Tennessee,
1987
).
66.
E.
Hasselbrink
and
B.
Lundqvist
,
Dynamics
, Handbook of Surface Science (
Elsevier Science
,
2008
).
67.
A.
Kokalj
,
Comput. Mater. Sci.
28
,
155
(
2003
).
You do not currently have access to this content.