The determination of minority-carrier lifetimes and surface recombination velocities is essential for the development of semiconductor technologies such as solar cells. The recent development of two-photon time-resolved microscopy allows for better measurements of bulk and subsurface interfaces properties. Here, we analyze the diffusion problem related to this optical technique. Our three-dimensional treatment enables us to separate lifetime (recombination) from transport effects (diffusion) in the photoluminescence intensity. It also allows us to consider surface recombination occurring at a variety of geometries: a single plane (representing an isolated exposed or buried interface), a two parallel planes (representing two inequivalent interfaces), and a spherical surface (representing the enclosing surface of a grain boundary). We provide fully analytical results and scalings directly amenable to data fitting and apply those to experimental data collected on heteroepitaxial CdTe/ZnTe/Si.

1.
H.
Wang
,
K. S.
Wong
,
B. A.
Foreman
,
Z. Y.
Yang
, and
G. K. L.
Wong
,
J. Appl. Phys.
83
,
4773
(
1998
).
2.
Y.
Zhong
,
K. S.
Wong
,
W.
Zhang
, and
D. C.
Look
,
Appl. Phys. Lett.
89
,
022108
(
2006
).
3.
J.
Ma
,
D.
Kuciauskas
,
D.
Albin
,
R.
Bhattacharya
,
M.
Reese
,
T.
Barnes
,
J. V.
Li
,
T.
Gessert
, and
S.-H.
Wei
,
Phys. Rev. Lett.
111
,
067402
(
2013
).
4.
E. S.
Barnard
,
E. T.
Hoke
,
S. T.
Connor
,
J. R.
Groves
,
T.
Kuykendall
,
Z.
Yan
,
E. C.
Samulon
,
E. D.
Bourret-Courchesne
,
S.
Aloni
,
P. J.
Schuck
,
C. H.
Peters
, and
B. E.
Hardin
,
Sci. Rep.
3
,
2098
(
2013
).
5.
D.
Kuciauskas
,
S.
Farrell
,
P.
Dippo
,
J.
Moseley
,
H.
Moutinho
,
J. V.
Li
,
A. M. A.
Motz
,
A.
Kanevce
,
K.
Zaunbrecher
,
T. A.
Gessert
,
D. H.
Levi
,
W. K.
Metzger
,
E.
Colegrove
, and
S.
Sivananthan
,
J. Appl. Phys.
116
,
123108
(
2014
).
6.
M.
Boulou
and
D.
Bois
,
J. Appl. Phys.
48
,
4713
(
1977
).
7.
G. W.
't Hooft
and
C.
van Opdorp
,
J. Appl. Phys.
60
,
1065
(
1986
).
8.
R. K.
Ahrenkiel
and
D. J.
Dunlavy
,
J. Vac. Sci. Technol., A
7
,
822
(
1989
).
9.
A.
Kanevce
,
D.
Kuciauskas
,
D. H.
Levi
,
A. M.
Allende Motz
, and
S. W.
Johnston
,
J. Appl. Phys.
118
,
045709
(
2015
).
10.
K.
Shao
,
A.
Morisset
,
V.
Pouget
,
E.
Faraud
,
C.
Larue
,
D.
Lewis
, and
D.
McMorrow
,
Opt. Express
19
,
22594
(
2011
).
11.
F.
Stern
and
J. M.
Woodall
,
J. Appl. Phys.
45
,
3904
(
1974
).
12.
W.
Van Roosbroeck
,
J. Appl. Phys.
26
,
380
(
1955
).
13.
M.
Yamaguchi
,
A.
Yamamoto
, and
Y.
Itoh
,
J. Appl. Phys.
59
,
1751
(
1986
).
14.
R. K.
Ahrenkiel
, in
Semiconductors and Semimetals
, edited by
R. K.
Ahrenkiel
and
M. S.
Lundstrom
(
Academic
,
New York
,
1993
), Vol. 39.
15.
A. B.
Sproul
,
J. Appl. Phys.
76
,
2851
(
1994
).
16.
P.
Ščajev
,
V.
Gudelis
,
K.
Jarašiūnas
, and
P. B.
Klein
,
J. Appl. Phys.
108
,
023705
(
2010
).
17.
A.
Romeo
,
D. L.
Bätzner
,
H.
Zogg
,
C.
Vignali
, and
A. N.
Tiwari
,
Sol. Energy Mater. Sol. Cells
67
,
311
(
2001
).
18.
W.
Ludwig
,
P.
Reischig
,
A.
King
,
M.
Herbig
,
E. M.
Lauridsen
,
G.
Johnson
,
T. J.
Marrow
, and
J. Y.
Buffière
,
Rev. Sci. Instrum.
80
,
033905
(
2009
).
19.
R. K.
Ahrenkiel
,
B. M.
Keyes
,
L.
Wang
, and
S. P.
Albright
, in
Proceedings of the 22nd IEEE Photovoltaic Specialists Conference
,
Las Vegas
(
1991
), Vol. 22, p.
940
.
20.
H.
Carslaw
and
J.
Jaeger
,
Conduction of Heat in Solids
, 2nd ed. (
Oxford University Press
,
1978
).
You do not currently have access to this content.