Although amorphous selenium (a-Se) has a long and successful history of application in optical and X-ray imaging, some of its fundamental properties are still puzzling. In particularly, the mechanism of carrier recombination following x-ray excitation and electric field and temperature dependences of the electron-hole pair creation energy (Wehp) remain unclear. Using the combination of X-ray photocurrent and pulse height spectroscopy measurements, we measure Wehp in a wide range of temperatures (218–320 K) and electric fields (10–100 V/µm) and show that the conventional columnar recombination model which assumes Langevin recombination within a column (a primary electron track) fails to explain experimental results in a wide range of electric fields and temperatures. The reason for the failure of the conventional model is revealed in this work, and the theory of the columnar recombination is modified to include the saturation of the recombination rate at high electric field in order to account for the experimental results in the entire range of fields and temperatures.

1.
T.
Masuzawa
 et al.,
Appl. Phys. Lett.
102
,
073506
(
2013
).
2.
W.
Park
and
K.
Tanioka
,
Jpn. J. Appl. Phys., Part 1
53
,
031401
(
2014
).
3.
W.
Park
and
K.
Tanioka
,
Appl. Phys. Lett.
105
,
192106
(
2014
).
4.
S.
Kasap
 et al.,
Sensors
11
,
5112
5157
(
2011
).
5.
S.
Kasap
 et al.,
Phys. Status Solidi B
246
,
1794
1805
(
2009
).
6.
M. Z.
Kabir
and
S.
Imam
,
Appl. Phys. Lett.
102
,
153515
(
2013
).
7.
I.
Saito
 et al.,
Appl. Phys. Lett.
98
,
152102
(
2011
).
8.
A.
Reznik
,
K.
Jandieri
,
F.
Gebhard
, and
S. D.
Baranovskii
,
Appl. Phys. Lett.
100
,
132101
(
2012
).
9.
C. A.
Klein
,
J. Appl. Phys.
39
,
2029
2038
(
1968
).
10.
R. C.
Alig
and
S.
Bloom
,
Phys. Rev. Lett.
35
,
1522
(
1975
).
11.
C.
Haugen
and
S. O.
Kasap
,
Philos. Mag. B
71
,
91
(
1995
).
12.
M. C.
Heiber
,
C.
Baumbach
,
V.
Dyakonov
, and
C.
Deibel
,
Phys. Rev. Lett.
114
,
136602
(
2015
).
13.
W.
Tress
,
K.
Leo
, and
M.
Riede
,
Phys. Rev. B
85
,
155201
(
2012
).
14.
G.
Juska
and
K.
Arlauskas
,
Phys. Status Solidi A
77
,
387
(
1983
).
15.
A.
Reznik
,
S. D.
Baranovskii
,
O.
Rubel
,
K.
Jandieri
, and
J. A.
Rowlands
,
Phys. Status Solidi C
5
,
790
(
2008
).
16.
D.
Pai
and
R.
Enck
,
Phys. Rev. B
11
,
5163
(
1975
).
17.
R. A.
Street
,
S.
Cowan
, and
A. J.
Heeger
,
Phys. Rev. B
82
,
121301
(
2010
).
18.
C.
Haugen
,
S. O.
Kasap
, and
J. A.
Rowlands
,
J. Phys. D: Appl. Phys.
32
,
200
(
1999
).
19.
J.
Hirsch
and
H.
Jahankhani
,
J. Phys. C: Condens. Matter
1
,
8789
(
1989
).
20.
W.
Que
and
J. A.
Rowlands
,
Phys. Rev. B
51
,
10500
(
1995
).
21.
G.
Jaffe
,
Ann. Phys., Lpz. (Ser. No. 4)
347
,
303
(
1913
).
22.
O.
Bubon
 et al.,
Curr. Appl. Phys.
12
(
3
),
983
(
2012
).
23.
O.
Bubon
,
G.
DeCrescenzo
,
J. A.
Rowlands
, and
A.
Reznik
,
J. Non-Cryst. Solids
358
(
17
),
2431
(
2012
).
24.
A.
Reznik
 et al.,
J. Appl. Phys.
102
,
053711
(
2007
).
25.
I.
Blevis
,
J. Appl. Phys.
85
,
7958
(
1999
).
26.
B. J. M.
Lui
,
D. C.
Hunt
,
A.
Reznik
,
K.
Tanioka
, and
J. A.
Rowlands
,
Med. Phys.
33
,
3183
(
2006
).
27.
G.
Juska
and
K.
Arlauskas
,
Solid State Phenom.
44–46
,
551
(
1995
).
28.
M. Z.
Kabir
and
N.
Hijazi
,
Appl. Phys. Lett.
104
,
192103
(
2014
).
29.
A.
Reznik
 et al.,
J. Non-Cryst. Solids
354
,
2691
2696
(
2008
).
30.
G. A.
Ausman
and
F. B.
McLean
,
Appl. Phys. Lett.
26
,
173
(
1975
).
31.
P.
Langevin
,
Ann. Chim. Phys.
28
,
433
(
1903
).
32.
M. F.
Stone
 et al.,
Med. Phys.
29
,
319
(
2002
).
33.
D.
Mah
,
J. A.
Rowlands
, and
J.
Alan Rawlinson
,
Med. Phys.
25
,
444
(
1998
).
34.
R. J.
McIntyre
,
IEEE Trans. Electron Devices
ED-13
,
164
168
(
1966
).
You do not currently have access to this content.