The sputter-deposition on surfaces exposed to plasma plays an important role in the erosion behavior and overall performance of a wide range of plasma devices. Plasma models in the low density, low energy plasma regime typically neglect micron-scale surface feature effects on the net sputter yield and erosion rate. The model discussed in this paper captures such surface architecture effects via a computationally efficient view factor model. The model compares well with experimental measurements of argon ion sputter yield from a nickel surface with a triangle wave geometry with peak heights in the hundreds of microns range. Further analysis with the model shows that increasing the surface pitch angle beyond about 45° can lead to significant decreases in the normalized net sputter yield for all simulated ion incident energies (i.e., 75, 100, 200, and 400 eV) for both smooth and roughened surfaces. At higher incident energies, smooth triangular surfaces exhibit a nonmonotonic trend in the normalized net sputter yield with surface pitch angle with a maximum yield above unity over a range of intermediate angles. The resulting increased erosion rate occurs because increased sputter yield due to the local ion incidence angle outweighs increased deposition due to the sputterant angular distribution. The model also compares well with experimentally observed radial expansion of protuberances (measuring tens of microns) in a nano-rod field exposed to an argon beam. The model captures the coalescence of sputterants at the protuberance sites and accurately illustrates the structure's expansion due to deposition from surrounding sputtering surfaces; these capabilities will be used for future studies into more complex surface architectures.

1.
J. N.
Brooks
,
Fusion Sci. Technol.
4
,
33
(
1983
).
2.
R.
Behrisch
,
G.
Federici
,
A.
Kukushkin
, and
D.
Reiter
,
J. Nucl. Mater.
313–316
,
388
(
2003
).
3.
A.
Hassanein
,
Fusion Eng. Des.
60
,
527
(
2002
).
4.
J.
Wang
,
J.
Polk
,
J.
Brophy
, and
I.
Katz
,
J. Propul. Power
19
,
1192
(
2003
).
5.
P. Y.
Peterson
and
D. H.
Manzella
, “
Investigation of the erosion characteristics of a laboratory hall thruster
,
AIAA Paper 2003-5005,
2003
.
6.
I.
Katz
,
I. G.
Mikellides
,
R. E.
Wirz
,
J. R.
Anderson
, and
D. M.
Goebel
, “
Ion thruster life models
,” AIAA Paper 2005-4256,
2005
.
7.
R. E.
Wirz
,
J. R.
Anderson
, and
I.
Katz
,
J. Propul. Power
27
,
211
(
2011
).
8.
S. R.
Gildea
,
T. S.
Matlock
,
M.
Martinez-Sanchez
, and
W. A.
Hargus
,
J. Propul. Power
29
,
906
(
2013
).
9.
D.
Rosenberg
and
G. K.
Wehner
,
J. Appl. Phys.
33
,
1842
(
1962
).
10.
P.
Sigmund
,
J. Mater. Sci.
8
,
1545
(
1973
).
11.
J. N.
Brooks
,
Fusion Eng. Des.
60
,
515
(
2002
).
13.
S.
Carpentier
,
R. A.
Pitts
,
P. C.
Stangeby
,
J. D.
Elder
,
A. S.
Kukushkin
,
S.
Lisgo
, and
W.
Fundamenski
,
J. Nucl. Phys.
415
,
S165
(
2011
).
14.
S. Y. M.
Cheng
, “
Modeling of hall thruster lifetime and erosion mechanisms
,” Ph.D. thesis (
Massachusetts Institute of Technology
, Cambridge, MA,
2007
).
15.
M. R.
Nakles
, “
Experimental and modeling studies of low-energy ion sputtering for ion thrusters
,” Master's thesis (
Virginia Polytechnic Institute and State University
, Blacksburg, VA,
2004
).
16.
T. S.
Matlock
,
D. M.
Goebel
,
R.
Conversano
, and
R. E.
Wirz
,
Plasma Sources Sci. Technol.
23
,
025014
(
2014
).
17.
N. M.
Ghoniem
,
A.
Sehirlioglu
,
A. L.
Neff
,
J. P.
Allain
,
B.
Williams
, and
R.
Sharghi-Moshtaghin
,
Appl. Surf. Sci.
331
,
299
(
2015
).
18.
C. E.
Huerta
,
T. S.
Matlock
, and
R. E.
Wirz
, “
Validation of a plasma-facing surface sputtering and deposition view factor model
,” AIAA Paper 2015-4503,
2015
.
19.
R. E.
Wirz
, “
Discharge plasma processes of ring-cusp ion thrusters
,” Ph.D. thesis (
Department of Aerospace
, Caltech, Pasadena, CA,
2015
).
20.
Y.
Yamamura
,
Y.
Itikawa
, and
N.
Itoh
, “
Angular dependence of sputtering yields of monoatomic solids
,”
Technical Report No. IPPJ-AM-26
(
1983
).
21.
22.
H.
Yanlin
,
C.
Jian
,
M.
Wei
,
S.
Yan
, and
C.
Jun
, paper presented at the
33rd International Electric Propulsion Conference
, Washington, DC (
2013
), IEPC-2013-172.
23.
J. F.
Ziegler
,
J. P.
Biersack
, and
M. D.
Ziegler
,
The Stopping and Range of Ions in Matter
(
SRIM Co.
,
Maryland
,
2008
), pp.
2
-
34
—2-37.
24.
G.
Hobler
and
G.
Betz
,
Nucl. Instrum. Methods
180
,
203
(
2001
).
25.
Z. L.
Zhang
and
L.
Zhang
,
Radiat. Eff. Defects Solids
159
,
301
(
2004
).
26.
Y.
Yamamura
,
Nucl. Instrum. Methods
194
,
515
(
1982
).
27.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2004
).
28.
R. A.
Plastock
and
G.
Kalley
,
Theory and Problems of Computer Graphics
(
McGraw-Hill
,
1986
).
29.
A.
Woo
,
P.
Poulin
, and
A.
Fournier
,
IEEE Comput. Graphics Appl.
10
,
13
(
1990
).
30.
R.
Godman
, in
Graphics Gems
, edited by
A. S.
Glassner
(
Academic Press
,
1995
).
31.
D.
Sunday
, “
Intersections of lines and planes
” (
2012
).
32.
M.
Tartz
,
T.
Heyn
,
C.
Bundesmann
,
C.
Zimmermann
, and
H.
Neumann
,
Eur. Phys. J. D
61
,
587
(
2011
).
33.
National Physical Laboratory
, “
Sputter yield values
” (
2014
).
34.
R. M.
Bradley
and
J. M. E.
Harper
,
J. Vac. Sci. Technol., A
6
,
2390
(
1988
).
You do not currently have access to this content.