Neutral temperature Tg in capacitively coupled argon plasmas was measured by using a fiber Bragg grating sensor. The measurement of Tg is based on the thermal equilibrium process between the sensor and neutral gases, which is found to become fast upon increasing pressure, due to enhanced heat conduction. Additionally, Tg was found to increase with increasing high frequency power due to enhancive collisions with charged particles. It is also observed that Tg exhibits a significant gradient in space, ranging from 10 to 120 °C higher than room temperature for the conditions investigated. In addition, the spatial profiles of Tg at different pressures generally resemble those of the Ar+ density ni, measured with a floating double probe. The neutral gas is mainly heated via elastic collisions with ions in the sheath region followed by heat conduction among neutrals.

1.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
Wiley
,
New York
,
2005
).
2.
A.
Perret
,
P.
Chabert
,
J.
Jolly
, and
J. P.
Booth
,
Appl. Phys. Lett.
86
,
021501
(
2005
).
3.
M. A.
Lieberman
,
J. P.
Booth
,
P.
Chabert
,
J. M.
Rax
, and
M. M.
Turner
,
Plasma Sources Sci. Technol.
11
,
283
(
2002
).
4.
Y. X.
Liu
,
Y. R.
Zhang
,
A.
Bogaerts
, and
Y. N.
Wang
,
J. Vac. Sci. Technol., A
33
,
020801
(
2015
).
5.
Y. X.
Liu
,
Y. S.
Liang
,
D. Q.
Wen
,
Z. H.
Bi
, and
Y. N.
Wang
,
Plasma Sources Sci. Technol.
24
,
025013
(
2015
).
6.
J. O.
Lawrence
and
B. H.
Michael
,
Appl. Phys. Lett.
63
,
2484
(
1993
).
7.
L.
Sansonnens
and
J.
Schmitt
,
Appl. Phys. Lett.
82
,
182
(
2003
).
8.
S. K.
Ahn
and
H. Y.
Chang
,
Appl. Phys. Lett.
93
,
031506
(
2008
).
9.
X. Z.
Jiang
,
Y. X.
Liu
,
S.
Yang
,
W. Q.
Lu
,
Z. H.
Bi
,
X. S.
Li
, and
Y. N.
Wang
,
J. Vac. Sci. Technol., A
29
,
011006
(
2011
).
10.
Z. H.
Bi
,
Z. L.
Dai
,
Y. R.
Zhang
,
D. P.
Liu
, and
Y. N.
Wang
,
Plasma Sources Sci. Technol.
22
,
055007
(
2013
).
11.
K. L.
Steffens
and
M. A.
Sobolewski
,
J. Appl. Phys.
96
,
71
(
2004
).
12.
E. J.
Tonnis
and
D. B.
Graves
,
J. Vac. Sci. Technol., A
20
,
1787
(
2002
).
13.
M. W.
Kiehlbauch
and
D. B.
Graves
,
J. Appl. Phys.
89
,
2047
(
2001
).
14.
T. J.
Sommerer
and
M. J.
Kushner
,
J. Appl. Phys.
70
,
1240
(
1991
).
15.
G. A.
Hebner
and
A. M.
Paterson
,
Plasma Sources Sci. Technol.
19
,
015020
(
2010
).
16.
P. J.
Bruggeman
,
N.
Sadeghi
,
D. C.
Schram
, and
V.
Linss
,
Plasma Sources Sci. Technol.
23
,
023001
(
2014
).
17.
V. M.
Donnelly
and
M. V.
Malyshev
,
Appl. Phys. Lett.
77
,
2467
(
2000
).
18.
X. J.
Huang
,
Y.
Xin
,
Q. H.
Yuan
, and
Z. Y.
Ning
,
Phys. Plasmas
15
,
073501
(
2008
).
19.
N.
Bulcourt
,
J. P.
Booth
,
E. A.
Hudson
,
J.
Luque
,
D. K. W.
Mok
,
E. P.
Lee
,
F.-T.
Chau
, and
J. M.
Dyke
,
J. Chem. Phys.
120
,
9499
(
2004
).
20.
W. Y.
Liu
,
Y.
Xu
,
Y. X.
Liu
,
F.
Peng
,
Q.
Guo
,
X. S.
Li
,
A. M.
Zhu
, and
Y. N.
Wang
,
J. Appl. Phys.
117
,
023306
(
2015
).
21.
R.
Ramos
,
G.
Cunge
,
M.
Touzeau
, and
N.
Sadeghi
,
J. Phys. D: Appl. Phys.
41
,
115205
(
2008
).
22.
H.
Abada
,
P.
Chabert
,
J. P.
Booth
, and
J.
Robiche
,
J. Appl. Phys.
92
,
4223
(
2002
).
23.
A.
Agarwal
,
S.
Rauf
, and
K.
Collins
,
Plasma Sources Sci. Technol.
21
,
055012
(
2012
).
24.
A. D.
Kersey
 et al,
J. Lightwave Technol.
15
,
1442
1463
(
1997
).
25.
L.
Sun
,
The Research of Fiber Bragg Grating Sensing Technology and Engineering Application[D]
(
Dalian University of Technology
,
2006
) (in Chinese).
26.
L.
Rodriguez-Cobo
 et al,
J. Mater. Process. Technol.
214
,
839
843
(
2014
).
27.
S. M. A.
Musa
,
R. R.
Ibrahim
, and
A. I.
Azmi
,
Jurnal Teknologi.
68
(3) (
2014
).
28.
M. R.
Wertheimer
 et al,
Appl. Phys. Lett.
100
,
201112
(
2012
).
You do not currently have access to this content.