This paper presents an experimental investigation on the behavior of magnetorheological (MR) fluids in high-frequency oscillatory squeeze mode and proposes a mathematical model to reveal the MR mechanism. A specific MR squeeze structure avoiding the cavitation effect is designed for the experimental tests. The magnetic field- and gap distance-dependent damping force of the MR squeeze structure is presented and compared with the dramatically large damping force under quasi-static excitations, a moderate damping force is observed at high frequencies. Subsequently, in order to interpret the behavior of MR fluids at high frequencies, employing the continuum media theory, a mathematical model is established with consideration of the fluid inertia and hysteresis property. The damping force comparison between the model and experimental tests indicates that in high-frequency oscillatory squeeze mode, the squeeze-strengthen effect does not work and the shear yield stress can be applied well to characterize the flow property of MR fluids. In addition, the hysteresis property has a significant influence on the damping performance.

1.
J. D.
Carlson
and
M. R.
Jolly
, “
MR fluid, foam and elastomer devices
,”
Mechatronics
10
(
4
),
555
569
(
2000
).
2.
R.
Tao
, “
Super-strong magnetorheological fluids
,”
J. Phys.: Condens. Matter
13
(
50
),
R979
(
2001
).
3.
K.
Shah
and
S. B.
Choi
, “
The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids
,”
Smart Mater. Struct.
24
(
1
),
015004
(
2015
).
4.
D. H.
Wang
and
W. H.
Liao
, “
Magnetorheological fluid dampers: A review of parametric modelling
,”
Smart Mater. Struct.
20
(
2
),
023001
(
2011
).
5.
X. X.
Bai
,
W.
Hu
, and
N. M.
Wereley
, “
Magnetorheological damper utilizing an inner bypass for ground vehicle suspensions
,”
IEEE Trans. Magn.
49
(
7
),
3422
3425
(
2013
).
6.
F.
Imaduddin
,
S. A.
Mazlan
, and
H.
Zamzuri
, “
A design and modelling review of rotary magnetorheological damper
,”
Mater. Des.
51
,
575
591
(
2013
).
7.
X. J.
Zhang
,
A.
Farjoud
,
M.
Ahmadian
,
K. H.
Guo
, and
M.
Craft
, “
Dynamic testing and modeling of an MR squeeze mount
,”
J. Intell. Mater. Syst. Struct.
22
,
1717
(
2011
).
8.
T. M.
Nguyen
,
C.
Ciocanel
, and
M. H.
Elahinia
, “
A squeeze-flow mode magnetorheological mount: Design, modeling, and experimental evaluation
,”
J. Vib. Acoust.
134
(
2
),
021013
(
2012
).
9.
X. X.
Bai
,
P.
Chen
,
L. J.
Qian
, and
P.
Kan
, “
Design and analysis of a magnetorheological fluid mount featuring uni-directional squeeze mode
,” in
ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS2015)
, Colorado, USA, 21–23 September
2015
, Paper No. SMASIS2015-8813.
10.
S.
Dai
,
C.
Du
, and
G.
Yu
, “
Design, testing and analysis of a novel composite magnetorheological fluid clutch
,”
J. Intell. Mater. Syst. Struct.
24
(
14
),
1675
1682
(
2013
).
11.
K. O.
Havelka
and
J. W.
Pialet
, “
Electrorheological technology: The future is now
,”
CHEMTECH
26
(
6
),
36
45
(
1996
).
12.
X.
Tang
,
X.
Zhang
,
R.
Tao
, and
Y.
Rong
, “
Structure-enhanced yield stress of magnetorheological fluids
,”
J. Appl. Phys.
87
(
5
),
2634
2638
(
2000
).
13.
X. Z.
Zhang
,
X. L.
Gong
,
P. Q.
Zhang
, and
Q. M.
Wang
, “
Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids
,”
J. Appl. Phys.
96
(
4
),
2359
2364
(
2004
).
14.
S. A.
Mazlan
,
A.
Issa
,
H. A.
Chowdhury
, and
A. G.
Olabi
, “
Magnetic circuit design for the squeeze mode experiments on magnetorheological fluids
,”
Mater. Des.
30
(
6
),
1985
1993
(
2009
).
15.
S. A.
Mazlan
,
I.
Ismail
,
H.
Zamzuri
,
A.
Fatah
, and
A.
Yasser
, “
Compressive and tensile stresses of magnetorheological fluids in squeeze mode
,”
Int. J. Appl. Electromagn. Mech.
36
(
4
),
327
337
(
2011
).
16.
C.
Guo
,
X.
Gong
,
S.
Xuan
,
L.
Qin
, and
Q.
Yan
, “
Compression behaviors of magnetorheological fluids under nonuniform magnetic field
,”
Rheol. Acta
52
(
2
),
165
176
(
2013
).
17.
C.
Guo
,
X.
Gong
,
S.
Xuan
,
Q.
Yan
, and
X.
Ruan
, “
Squeeze behavior of magnetorheological fluids under constant volume and uniform magnetic field
,”
Smart Mater. Struct.
22
(
4
),
045020
(
2013
).
18.
B.
Sapiński
and
J.
Gołdasz
, “
Development and performance evaluation of an MR squeeze-mode damper
,”
Smart Mater. Struct.
24
(
11
),
115007
(
2015
).
19.
A. C.
Becnel
,
S. G.
Sherman
,
W.
Hu
, and
N. M.
Wereley
, “
Squeeze strengthening of magnetorheological fluids using mixed mode operation
,”
J. Appl. Phys.
117
(
17
),
17C708
(
2015
).
20.
C.
Hegger
and
J.
Maas
, “
Investigation of the squeeze strengthening effect in shear mode
,”
J. Intell. Mater. Syst. Struct.
(published online,
2015
).
21.
W.
Kordonski
and
S.
Gorodkin
, “
The behavior of a magnetorheological (MR) fluid under compressive deformation
,”
J. Rheol. (1978-present)
60
(
1
),
129
139
(
2016
).
22.
A.
Spaggiari
and
E.
Dragoni
, “
Effect of pressure on the flow properties of magnetorheological fluids
,”
J. Fluids Eng.
134
(
9
),
091103
(
2012
).
23.
A.
Spaggiari
and
E.
Dragoni
, “
Combined squeeze-shear properties of magnetorheological fluids: Effect of pressure
,”
J. Intell. Mater. Syst. Struct.
25
(
9
),
1041
1053
(
2014
).
24.
J.
de Vicente
,
J. A.
Ruiz-López
,
E.
Andablo-Reyes
,
J. P.
Segovia-Gutiérrez
, and
R.
Hidalgo-Alvarez
, “
Squeeze flow magnetorheology
,”
J. Rheol. (1978-present)
55
(
4
),
753
779
(
2011
).
25.
J. A.
Ruiz-López
,
R.
Hidalgo-Alvarez
, and
J.
de Vicente
, “
On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression
,”
Rheol. Acta
51
(
7
),
595
602
(
2012
).
26.
I.
Ismail
,
S. A.
Mazlan
,
H.
Zamzuri
, and
A. G.
Olabi
, “
Fluid–particle separation of magnetorheological fluid in squeeze mode
,”
Jpn. J. Appl. Phys., Part 1
51
(
6R
),
067301
(
2012
).
27.
H.
Wang
,
C.
Bi
,
Z.
Zhang
,
J.
Kan
, and
C.
Gao
, “
An investigation of tensile behavior of magnetorheological fluids under different magnetic fields
,”
J. Intell. Mater. Syst. Struct.
24
(
5
),
541
547
(
2013
).
28.
N.
Gstöttenbauer
,
A.
Kainz
,
B.
Manhartsgruber
, and
R.
Scheidl
, “
Experimental and numerical studies of squeeze mode behaviour of magnetic fluid
,”
Proc. Inst. Mech. Eng., Part C
222
(
12
),
2395
2407
(
2008
).
29.
B.
Sapiński
,
W.
Horak
, and
M.
Szczęch
, “
Investigation of MR fluids in the oscillatory squeeze mode
,”
Acta Mech. Autom.
7
(
2
),
111
116
(
2013
).
30.
A.
Farjoud
,
R.
Cavey
,
M.
Ahmadian
, and
M.
Craft
, “
Magneto-rheological fluid behavior in squeeze mode
,”
Smart Mater. Struct.
18
(
9
),
095001
(
2009
).
31.
S. L.
Vieira
,
C.
Ciocanel
,
P.
Kulkarni
,
A.
Agrawal
, and
N.
Naganathan
, “
Behavior of MR fluids in squeeze mode
,”
Int. J. Veh. Des.
33
(
1–3
),
36
49
(
2003
).
32.
P.
Kulkarni
,
C.
Ciocanel
,
S. L.
Vieira
, and
N.
Naganathan
, “
Study of the behavior of MR fluids in squeeze, torsional and valve modes
,”
J. Intell. Mater. Syst. Struct.
14
(
2
),
99
104
(
2003
).
33.
G. H.
Covey
and
B. R.
Stanmore
, “
Use of the parallel-plate plastometer for the characterisation of viscous fluids with a yield stress
,”
J. Non-Newtonian Fluid Mech.
8
(
3
),
249
260
(
1981
).
34.
J.
Engmann
,
C.
Servais
, and
A. S.
Burbidge
, “
Squeeze flow theory and applications to rheometry: A review
,”
J. Non-Newtonian Fluid Mech.
132
(
1
),
1
27
(
2005
).
35.
M. R.
Jolly
and
J. D.
Carlson
, “
Controllable squeeze film damping using magnetorheological fluid
,” in
ACTUATOR 96, 5th International Conference on New Actuator
(
1996
), pp.
333
336
.
36.
R. W.
Phillips
, “
Engineering applications of fluids with a variable yield stress
,” Ph.D. dissertation (
University of California
,
Berkeley
,
1969
).
37.
F. M.
White
,
Fluid Mechanics
, 4th ed. (
WCB/McGraw-Hill
,
1999
).
38.
X. X.
Bai
,
P.
Chen
, and
L. J.
Qian
, “
Principle and validation of modified hysteretic models for magnetorheological dampers
,”
Smart Mater. Struct.
24
(
8
),
085014
(
2015
).
39.
M. G.
Yang
,
C. Y.
Li
, and
Z. Q.
Chen
, “
A new simple non-linear hysteretic model for MR damper and verification of seismic response reduction experiment
,”
Eng. Struct.
52
,
434
445
(
2013
).
You do not currently have access to this content.