A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

1.
Physics of Graphene
, edited by
H.
Aoki
and
M. S.
Dresselhaus
(
Springer
,
New York
,
2014
).
2.
Y.
Zhang
,
T.
Tang
,
C.
Girit
,
Z.
Hao
,
M. C.
Martin
,
A.
Zettl
,
M. F.
Crommie
,
Y. R.
Shen
, and
F.
Wang
,
Nature
459
,
820
(
2009
).
3.
W. J.
Yu
,
L.
Liao
,
S. H.
Chae
,
Y. H.
Lee
, and
X.
Duan
,
Nano Lett.
11
,
4759
(
2011
).
4.
W.
Liu
,
H.
Li
,
C.
Xu
,
Y.
Khatami
, and
K.
Banerjee
,
Carbon
49
,
4122
(
2011
).
5.
W.
Liu
,
S.
Kraemer
,
D.
Sarkar
,
H.
Li
,
P. M.
Ajayan
, and
K.
Banerjee
,
Chem. Mater.
26
,
907
(
2014
).
6.
S.
Chen
,
W.
Cai
,
R. D.
Piner
,
J. W.
Suk
,
Y.
Wu
,
Y.
Ren
,
J.
Kang
, and
R. S.
Ruoff
,
Nano Lett.
11
,
3519
(
2011
).
7.
H.
Choi
,
Y.
Lim
,
M.
Park
,
S.
Lee
,
Y.
Kang
,
M. S.
Kim
,
J.
Kim
, and
M.
Jeon
,
J. Mater. Chem. C
3
,
1463
(
2015
).
8.
C.
Mattevi
,
H.
Kim
, and
M.
Chhowalla
,
J. Mater. Chem.
21
,
3324
(
2011
).
9.
N.
Liu
,
L.
Fu
,
B.
Dai
,
K.
Yan
,
X.
Liu
,
R.
Zhao
,
Y.
Zhang
, and
Z.
Liu
,
Nano Lett.
11
,
297
(
2011
).
10.
W.
Fang
,
A. L.
Hsu
,
R.
Caudillo
,
Y.
Song
,
A. G.
Birdwell
,
E.
Zakar
,
M.
Kalbac
,
M.
Dubey
,
T.
Palacios
,
M. S.
Dresselhaus
,
P. T.
Araujo
, and
J.
Kong
,
Nano Lett.
13
,
1541
(
2013
).
11.
U.
Vahalia
,
P. A.
Dowben
, and
A.
Miller
,
J. Vac. Sci. Technol., A
4
(
3
),
1675
(
1986
).
12.
A.
Reina
,
X.
Jia
,
J.
Ho
,
D.
Nezich
,
H.
Son
,
V.
Bulovic
,
M. S.
Dresselhaus
, and
J.
Kong
,
Nano Lett.
9
(
1
),
30
(
2009
).
13.
X.
Liu
,
L.
Fu
,
N.
Liu
,
T.
Gao
,
Y.
Zhang
,
L.
Liao
, and
Z.
Liu
,
J. Phys. Chem. C
115
,
11976
(
2011
).
14.
Y.
Wu
,
H.
Chou
,
H.
Ji
,
Q.
Wu
,
S.
Chen
,
W.
Jiang
,
Y.
Hao
,
J.
Kang
,
Y.
Ren
,
R. D.
Piner
, and
R. S.
Ruoff
,
ACS Nano
6
(
9
),
7731
(
2012
).
15.
S.
Lee
,
K.
Lee
, and
Z.
Zhong
,
Nano Lett.
10
,
4702
(
2010
).
16.
S. M.
Kim
,
A.
Hsu
,
Y. H.
Lee
,
M.
Dresselhaus
,
T.
Palacios
,
K. K.
Kim
, and
J.
Kong
,
Nanotechnology
24
,
365602
(
2013
).
17.
J.
Crank
,
The Mathematics of Diffusion
, 2nd ed. (
Clarendon Press
,
Oxford
,
1975
).
18.
W.
Gale
and
T.
Totemeier
,
Smithells Metals Reference Book
, 8th ed. (
Elsevier Butterworth-Heinemann, Ltd.
,
Oxford, UK
,
2004
).
19.
M.
Fabiane
, “
Chemical vapour deposition of graphene: Fundamental aspects of synthesis and characterization
,” Ph.D. thesis (
University of Pretoria
,
South Africa
,
2014
).
20.
M.
Her
,
R.
Beamsa
, and
L.
Novotnya
,
Phys. Lett. A
377
,
1455
(
2013
).
21.
L. M.
Malard
,
M. A.
Pimenta
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rep.
473
,
51
(
2009
).
22.
A. C.
Ferrari
,
J. C.
Meyer
,
V.
Scardaci
,
C.
Casiraghi
,
M.
Lazzeri
,
F.
Mauri
,
S.
Piscanec
,
D.
Jiang
,
K. S.
Novoselov
,
S.
Roth
, and
A. K.
Geim
,
Phys. Rev. Lett.
97
,
187401
(
2006
).
23.
L.
Zhang
,
C. M. B.
Holt
,
E. J.
Luber
,
B. C.
Olsen
,
H.
Wang
,
M.
Danaie
,
X.
Cui
,
X.
Tan
,
V.
Lui
,
W. P.
Kalisvaart
, and
D.
Mitlin
,
J. Phys. Chem. C
115
,
24381
(
2011
).
24.
A.
Dato
,
V.
Radmilovic
,
Z.
Lee
,
J.
Phillips
, and
M.
Frenklach
,
Nano Lett.
8
(
7
),
2012
(
2008
).
25.
J. D.
Wood
,
S. W.
Schmucker
,
A. S.
Lyons
,
E.
Pop
, and
J. W.
Lyding
,
Nano Lett.
11
,
4547
(
2011
).
26.
J.
Du Plessis
,
Solid State Phenomena—Part B
, Diffusion and Defect Data Vol. 11 (
Sci-Tech Publications
,
Brookfield, USA
,
1990
).
27.
S.
Stølen
and
T.
Grande
,
Chemical Thermodynamics of Materials
(
John Wiley & Sons, Ltd.
,
2004
).
28.
S.
Hofmann
and
R.
Frech
,
Anal. Chem.
57
,
716
(
1985
).
29.
CRC Handbook of Chemistry and Physics
, 63rd ed., edited by
R. C.
Weast
and
M. J.
Astle
(
CRC Press, Inc.
,
1982
).
30.
K.
Wandelt
and
C. R.
Brundle
,
Phys. Rev. Lett.
46
,
1529
(
1982
).
31.
S.
Higashi
,
H.
Tochihara
,
V. L.
Shneerson
, and
D. K.
Saldin
,
Surf. Sci.
602
,
2473
(
2008
).
32.
P. R.
Kidambi
,
C.
Ducati
,
B.
Dlubak
,
D.
Gardiner
,
R. S.
Weatherup
,
M.
Martin
,
P.
Seneor
,
H.
Coles
, and
S.
Hofmann
,
J. Phys. Chem. C
116
,
22492
(
2012
).
33.
I.
Vlassiouk
,
S.
Smirnov
,
M.
Regmi
,
S. P.
Surwade
,
N.
Srivastava
,
R.
Feenstra
,
G.
Eres
,
C.
Parish
,
N.
Lavrik
,
P.
Datskos
,
S.
Dai
, and
P.
Fulvio
,
J. Phys. Chem. C
117
,
18919
(
2013
).
34.
A. W.
Robertson
,
A.
Bachmatiuk
,
Y. A.
Wu
,
F.
Schäffel
,
B.
Rellinghaus
,
B.
Büchner
,
M. H.
Rümmeli
, and
J. H.
Warner
,
ACS Nano
5
(
8
),
6610
(
2011
).
35.
D. H.
Jung
,
C.
Kang
,
M.
Kim
,
H.
Cheong
,
H.
Lee
, and
J. S.
Lee
,
J. Phys. Chem. C
118
,
3574
(
2014
).
36.
M.
Losurdo
,
M. M.
Giangregorio
,
P.
Capezzuto
, and
G.
Bruno
,
Phys. Chem. Chem. Phys.
13
,
20836
(
2011
).
37.
X.
Zhang
,
L.
Wang
,
J.
Xin
,
B. I.
Yakobson
, and
F.
Ding
,
J. Am. Chem. Soc.
136
,
3040
(
2014
).
38.
P.
Lenzsolomun
,
M. C.
Wu
, and
W.
Goodman
,
Catal. Lett.
25
,
75
(
1994
).
39.
J. A.
Venables
,
G. D. T.
Spiller
, and
M.
Hanbucken
,
Rep. Prog. Phys.
47
,
399
(
1984
).
40.
W.
Cai
,
R. D.
Piner
,
Y.
Zhu
,
X.
Li
,
Z.
Tan
,
H. C.
Floresca
,
C.
Yang
,
L.
Lu
,
M. J.
Kim
, and
R. S.
Ruoff
,
Nano Res.
2
,
851
(
2009
).
41.
S.
Bhaviripudi
,
X.
Jia
,
M. S.
Dresselhaus
, and
J.
Kong
,
Nano Lett.
10
,
4128
(
2010
).
42.
R.
Muñoz
and
C.
Gómez-Aleixandre
,
Chem. Vap. Deposition
19
,
297
(
2013
).
43.
G. A.
López
and
E. J.
Mittemeijer
,
Scr. Mater.
51
,
1
(
2004
).
44.
J. J.
Lander
,
H. E.
Kern
, and
A. L.
Beach
,
J. Appl. Phys.
23
,
1305
(
1952
).
45.
A.
Harpale
,
M.
Panesi
, and
H. B.
Chew
,
J. Chem. Phys.
142
,
061101
(
2015
).
46.
S.
Petnikota
,
N. K.
Rotte
,
M. V.
Reddy
,
V. V. S. S.
Srikanth
, and
B. V. R.
Chowdari
,
ACS Appl. Mater. Interfaces
7
,
2301
(
2015
).
47.
S.
Petnikota
,
N. K.
Rotte
,
V. V. S. S.
Srikanth
,
B. S. R.
Kota
,
M. V.
Reddy
,
K. P.
Loh
, and
B. V. R.
Chowdari
,
J. Solid State Electrochem.
18
,
941
(
2014
).
You do not currently have access to this content.