Superconducting microresonators have been successfully utilized as detection elements for a wide variety of applications. With multiplexing factors exceeding 1000 detectors per transmission line, they are the most scalable low-temperature detector technology demonstrated to date. For high-throughput applications, fewer detectors can be coupled to a single wire but utilize a larger per-detector bandwidth. For all existing designs, fluctuations in fabrication tolerances result in a non-uniform shift in resonance frequency and sensitivity, which ultimately limits the efficiency of bandwidth utilization. Here, we present the design, implementation, and initial characterization of a superconducting microresonator readout integrating two tunable inductances per detector. We demonstrate that these tuning elements provide independent control of both the detector frequency and sensitivity, allowing us to maximize the transmission line bandwidth utilization. Finally, we discuss the integration of these detectors in a multilayer fabrication stack for high-speed readout of the D-Wave quantum processor, highlighting the use of control and routing circuitry composed of single-flux-quantum loops to minimize the number of control wires at the lowest temperature stage.

1.
P. K.
Day
,
H. G.
LeDuc
,
B. A.
Mazin
,
A.
Vayonakis
, and
J.
Zmuidzinas
,
Nature
425
,
817
821
(
2003
).
2.
H. G.
Leduc
 et al.,
Appl. Phys. Lett.
97
,
102509
(
2010
).
3.
J.
Gao
 et al.,
Appl. Phys. Lett.
98
,
232508
(
2011
).
4.
T.
Cecil
 et al.,
Appl. Phys. Lett.
101
,
032601
(
2012
).
5.
P. J.
de Visser
 et al.,
Phys. Rev. Lett.
106
,
167004
(
2011
).
6.
R.
Barends
 et al.,
Appl. Phys. Lett.
92
,
223502
(
2008
).
7.
M. R.
Vissers
,
M. P.
Weides
,
J. S.
Kline
,
M.
Sandberg
, and
D. P.
Pappas
,
Appl. Phys. Lett.
101
,
022601
(
2012
).
8.
A.
Catalano
 et al.,
Astron. Astrophys.
580
,
A15
(
2015
).
9.
A.
Monfardini
 et al.,
Astron. Astrophys.
521
,
A29
(
2010
).
10.
A.
Monfardini
 et al.,
ApJ Suppl. Ser.
194
,
24
(
2011
).
11.
P. R.
Maloney
 et al.,
Proc. SPIE
7741
,
77410F
(
2010
).
12.
L. J.
Swenson
 et al.,
Proc. SPIE
8452
,
84520P
(
2012
).
13.
C. M.
McKenney
 et al.,
Proc. SPIE
8452
,
84520S
(
2012
).
14.
B. A.
Mazin
 et al.,
Proc. SPIE
7735
,
773518
(
2010
).
15.
O.
Quaranta
,
T. W.
Cecil
,
L.
Gades
,
B.
Mazin
, and
A.
Miceli
,
Supercond. Sci. Technol.
26
,
105021
(
2013
).
16.
L. J.
Swenson
 et al.,
Appl. Phys. Lett.
96
,
263511
(
2010
).
17.
A.
Cruciani
 et al.,
J. Low Temp. Phys.
167
,
311
(
2012
).
18.
D. C.
Moore
 et al.,
Appl. Phys. Lett.
100
,
232601
(
2012
).
19.
M.
Jerger
 et al.,
Europhys. Lett.
96
,
40012
(
2011
).
20.
Y.
Chen
 et al.,
Appl. Phys. Lett.
101
,
182601
(
2012
).
21.
J. A. B.
Mates
,
G. C.
Hilton
,
K. D.
Irwin
,
L. R.
Vale
, and
K. W.
Lehnert
,
Appl. Phys. Lett.
92
,
023514
(
2008
).
22.
J. D.
Whittaker
 et al.,
Phys. Rev. B
90
,
024513
(
2014
).
23.
M. R.
Vissers
 et al.,
Appl. Phys. Lett.
107
,
062601
(
2015
).
24.
A.
Palacios-Laloy
 et al.,
J. Low Temp. Phys.
151
,
1034
(
2008
).
25.
P.
Bunyk
 et al.,
IEEE Trans. Appl. Supercond.
24
,
1
(
2014
).
26.
R.
Harris
 et al.,
Phys. Rev. B
81
,
134510
(
2010
).
27.
R.
Harris
 et al.,
Phys. Rev. B
82
,
024511
(
2010
).
28.
M. W.
Johnson
 et al.,
Nature
473
,
194
(
2011
).
29.
T.
Lanting
 et al.,
Phys. Rev. X
4
,
021041
(
2014
).
30.
O.
Bourrion
 et al.,
J. Instrum.
6
,
P06012
(
2011
).
31.
S. J. C.
Yates
,
A. M.
Baryshev
,
J. J. A.
Baselmans
,
B.
Klein
, and
R.
Gsten
,
Appl. Phys. Lett.
95
,
042504
(
2009
).
32.
S.
McHugh
 et al.,
Rev. Sci. Instrum.
83
,
044702
(
2012
).
33.
J. M.
Martinis
 et al.,
Phys. Rev. Lett.
95
,
210503
(
2005
).
34.
A. D.
O'Connell
 et al.,
Appl. Phys. Lett.
92
,
112903
(
2008
).
35.
J.
Gao
 et al.,
Appl. Phys. Lett.
92
,
212504
(
2008
).
36.
J.
Gao
 et al.,
Appl. Phys. Lett.
92
,
152505
(
2008
).
37.
C.
Quintana
 et al.,
Appl. Phys. Lett.
105
,
062601
(
2014
).
38.
O.
Dial
 et al., e-print arXiv:1509.03859.
39.
K.
Geerlings
 et al.,
Appl. Phys. Lett.
100
,
192601
(
2012
).
40.
J. B.
Chang
 et al.,
Appl. Phys. Lett.
103
,
012602
(
2013
).
41.
J. M.
Martinis
and
A.
Megrant
, e-print arXiv:1410.5793.
42.
J.
Zmuidzinas
,
Annu. Rev. Condens. Mater. Phys.
3
,
169
(
2012
).
43.
L. J.
Swenson
 et al.,
J. Appl. Phys.
113
,
104501
(
2013
).
44.
T.
Lanting
 et al.,
Phys. Rev. B
79
,
060509
(
2009
).
45.
T.
Lanting
 et al.,
Phys. Rev. B
89
,
014503
(
2014
).
46.
B. A.
Mazin
 et al.,
Appl. Phys. Lett.
96
,
102504
(
2010
).
You do not currently have access to this content.