We present the thermoelectric properties of TiN/MgO superlattices employing first-principles calculation techniques. The Seebeck coefficients, the electrical conductances, the thermal conductances, and the figure of merit are investigated employing electrical and thermal transport calculations based on density functional theory combined with the nonequilibrium Green's function and nonequilibrium molecular dynamics simulation methods. The TiN/MgO superlattices with a small lattice mismatch at the interfaces are ideal systems to study the way for an enhancement of thermoelectric properties in artificial nanostructures. We find that the interfacial scattering between the two materials in the metal/insulator superlattices causes the electrical conductance to change rapidly, which enhances the Seebeck coefficient significantly. We show that the figure of merit for the artificial superlattice nanostructures has a much larger value compared with that of the bulk material and changes drastically with the superlattice configurations at the atomistic level.

1.
Themoelectric Nanomaterials: Materials Design and Applications
, edited by
K.
Koumoto
and
T.
Mori
(
Springer
,
2013
).
2.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
);
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
3.
4.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature
413
,
597
(
2001
).
5.
T. C.
Harman
,
P. J.
Taylor
,
M. P.
Walsh
, and
B. E.
LaForge
,
Science
297
,
2229
(
2002
).
6.
P.
Reddy
,
S.-Y.
Jang
,
R. A.
Segalman
, and
A.
Majumdar
,
Science
315
,
1568
(
2007
).
7.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
(
2008
).
8.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
(
2008
).
9.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
10.
Y.-L.
Li
,
Z.
Fan
, and
J.-C.
Zheng
,
J. Appl. Phys.
113
,
083705
(
2013
).
11.
J.
Sun
,
H.
Shi
,
T.
Siegrist
, and
D. J.
Singh
,
Appl. Phys. Lett.
107
,
153902
(
2015
).
12.
J.
Vacek
,
J. V.
Chocholoušová
,
I. G.
Stará
,
I.
Starý
, and
Y.
Dubi
,
Nanoscale
7
,
8793
(
2015
).
13.
K.
Hirose
,
K.
Kobayashi
,
M.
Shimono
,
H.
Ishii
, and
N.
Kobayashi
,
e-J. Surf. Sci. Nanotechnol.
12
,
115
(
2014
).
14.
J. O.
Sofo
and
G. D.
Mahan
,
Appl. Phys. Lett.
65
,
2690
(
1994
).
15.
I.
Ohkubo
,
T.
Aizawa
,
R.
Ang
, and
T.
Mori
(unpublished).
16.
K.
Kobayashi
,
N.
Kobayashi
, and
K.
Hirose
,
e-J. Surf. Sci. Nanotechnol.
12
,
230
(
2014
).
17.
K.
Kobayashi
,
H.
Takaki
,
N.
Kobayashi
, and
K.
Hirose
,
JPS Conf. Proc.
5
,
011013
(
2015
).
18.
W.-C.
Chen
,
C.-Y.
Peng
, and
L.
Chang
,
Nanoscale Res. Lett.
9
,
551
(
2014
).
19.
M.
Li
,
Y.
Wang
,
J.
Zhou
,
J.
Ren
, and
B.
Li
,
Eur. Phys.
88
,
149
(
2015
).
20.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
21.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
22.
H.
Haug
and
A.-P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
, 2nd ed. (
Springer
,
2007
).
23.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
1995
).
24.
M.
Brandbyge
,
J.-L.
Mozos
,
P.
Ordejón
,
J.
Taylor
, and
K.
Stokbro
,
Phys. Rev. B
65
,
165401
(
2002
).
25.
K.
Hirose
and
N.
Kobayashi
,
Quantum Transport Calculations for Nanosystems
(
Pan Stanford Publishing
,
2014
).
26.
H.
Takaki
,
N.
Kobayashi
, and
K.
Hirose
,
J. Nanomater.
2014
,
172169
.
27.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
69
,
195113
(
2004
).
28.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garcia
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sanchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
29.
O. F.
Sankey
and
D. J.
Niklewski
,
Phys. Rev. B
40
,
3979
(
1989
).
30.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
31.
L.
Kleinman
and
D. M.
Bylander
,
Phys. Rev. Lett.
48
,
1425
(
1982
).
32.
M. P.
López Sancho
,
J. M.
López Sancho
, and
J.
Rubio
,
J. Phys. F: Met. Phys.
14
,
1205
(
1984
).
33.
34.
T.
Takeuchi
,
J. Jpn. Inst. Metal
69
,
403
(
2005
).
35.
G.
Grosso
and
G. P.
Parravicini
,
Solid State Physics
(
Academic Press
,
2000
).
36.
H.
Wang
,
Y.
Xu
,
M.
Shimono
,
Y.
Tanaka
, and
M.
Yamazaki
,
Mater. Trans.
48
,
2419
(
2007
).
37.
J. M.
Sanchez
,
J. R.
Barefoot
,
R. N.
Jarrett
, and
J. K.
Tien
,
Acta Metall.
32
,
1519
(
1984
).
38.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
39.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
40.
T.
Frederiksen
,
M.
Paulsson
,
M.
Brandbyge
, and
A.-P.
Jauho
,
Phys. Rev. B
75
,
205413
(
2007
).
41.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
42.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
43.
J. F.
Shackelford
and
W.
Alexander
,
CRC Materials Science and Engineering Handbook
, 3rd ed. (
CRC Press
,
2000
).
You do not currently have access to this content.