Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi level is not pinned at the critical value of nitrogen coverage θN(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Npz state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N2 molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.

2.
G. A.
Jeffrey
and
G. S.
Parry
,
J. Chem. Phys.
23
,
406
(
1955
).
3.
G. A.
Slack
and
T. F.
McNelly
,
J. Cryst. Growth
34
,
263
(
1976
).
4.
S.
Krukowski
,
I.
Grzegory
,
M.
Bockowski
,
B.
Lucznik
,
T.
Suski
,
G.
Nowak
,
J.
Borysiuk
,
M.
Wroblewski
,
M.
Leszczynski
,
P.
Perlin
,
S.
Porowski
, and
J. L.
Weyher
,
Int. J. Mater. Prod. Technol.
22
,
226
(
2005
).
5.
S.
Krukowski
,
J. Chem. Phys.
117
,
5866
(
2002
).
6.
M.
Bockowski
,
I.
Grzegory
,
M.
Wroblewski
,
A.
Witek
,
J.
Jun
,
S.
Krukowski
,
S.
Porowski
,
R. M.
Ayral-Marin
, and
J. C.
Tedenac
,
AIP Conf. Proc.
309
,
1255
(
1994
).
7.
M.
Bickermann
,
F.
Octavian
,
B. M.
Epelbaum
,
P.
Heimann
,
M.
Feneberg
,
B.
Neuschl
,
K.
Thonke
, and
A.
Winnakcer
,
J. Cryst. Growth
339
,
13
(
2012
).
8.
W.
Gou
,
J.
Xie
,
C.
Akouala
,
S.
Mita
,
A.
Rice
,
J.
Tweedie
,
I.
Bryan
,
R.
Colazzo
, and
Z.
Sitar
,
J. Cryst. Growth
366
,
20
(
2013
).
9.
D.
Ehrentraut
and
Z.
Sitar
,
MRS Bull.
34
,
259
(
2009
).
10.
S. G.
Mueller
,
R. T.
Bondokov
,
K. E.
Morgan
,
G. A.
Slack
,
S. B.
Schujman
,
J.
Grandusky
,
J. A.
Smart
, and
L. J.
Schowalter
,
Phys. Status Solidi A
206
,
1153
(
2009
).
11.
H.
Hirayama
,
Proc. SPIE
7987
,
79870G
(
2011
).
12.
A.
Khan
, in
Conference on Lasers and Electro-Optics CLEO 2010
, San Jose, CA, 16 May 2010, Deep Ultraviolet LEDs, CTuCC1.
13.
K. B.
Nam
,
J.
Li
,
M. L.
Nakarmi
,
J. Y.
Lin
, and
H. X.
Jiang
,
Appl. Phys. Lett.
84
,
5264
(
2004
).
14.
Z.
Lochner
,
T.-T.
Kao
,
Y.-S.
Liu
,
X.-H.
Li
,
M. M.
Satter
,
S.-C.
Shen
,
P.
Douglas Yoder
,
J.-H.
Ryou
,
R. D.
Dupuis
,
Y.
Wei
,
H.
Xie
,
A.
Fischer
, and
F. A.
Ponce
,
Appl. Phys Lett.
102
,
101110
(
2013
).
15.
H. J.
Kim
,
S.
Choi
,
D.
Yoo
,
J.-H.
Ryou
,
R. D.
Dupuis
,
R. F.
Dalmau
,
P.
Lu
, and
Z.
Sitar
,
Appl. Phys. Lett.
93
,
022103
(
2008
).
16.
S. W.
King
,
J. P.
Barnak
,
M. D.
Bremser
,
K. M.
Tracy
,
C.
Ronning
,
R. F.
Davis
, and
R. J.
Nemanich
,
J. Appl. Phys.
84
,
5248
(
1998
).
17.
W. J.
Mecouch
,
B. P.
Wagner
,
Z. J.
Reitmeier
,
R. F.
Davis
,
C.
Pandarinath
,
B. J.
Rodriguez
, and
R. J.
Nemanich
,
J. Vac. Sci. Technol. A
23
,
72
(
2005
).
18.
C. D.
Lee
,
Y.
Dong
,
R. M.
Feenstra
,
J. E.
Northrup
, and
J.
Neugebauer
,
Phys. Rev. B
68
,
205317
(
2003
).
19.
R. M.
Feenstra
,
Y.
Dong
,
C. D.
Lee
, and
J. E.
Northrup
,
J. Vac. Sci. Technol. B
23
,
1174
(
2005
).
20.
Y.
Kumagai
,
K.
Akiyama
,
R.
Togashi
,
H.
Murakami
,
M.
Takeuchi
,
T.
Kinoshita
,
K.
Takada
,
Y.
Aoyagi
, and
A.
Koukitu
,
J. Cryst. Growth
305
,
366
(
2007
).
21.
J. E.
Northrup
,
R.
Di Felice
, and
J.
Neugebauer
,
Phys. Rev. B
55
,
13878
(
1997
).
22.
M. S.
Miao
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
80
,
155319
(
2009
).
23.
V.
Jindal
and
F.
Shahedipour-Sandvik
,
J. Appl. Phys.
105
,
084902
(
2009
).
24.
W.
Perez-Lopes
,
R.
Gonzalez-Hernandez
, and
J. A.
Rodriguez
,
J. Phys. Chem. Solids
74
,
1387
(
2013
).
25.
G.-X.
Qian
,
R. M.
Martin
, and
D. J.
Chadi
,
Phys. Rev. B
38
,
7649
(
1988
).
26.
V. M.
Bermudez
,
T. M.
Jung
,
K.
Doverspike
, and
A. E.
Wickenden
,
J. Appl. Phys.
79
,
110
(
1996
).
27.
V. M.
Bermudez
,
C.-I.
Wu
, and
A.
Kahn
,
J. Appl. Phys.
89
,
1991
(
2001
).
28.
C.-I.
Wu
and
A.
Kahn
,
Appl. Phys. Lett.
74
,
546
(
1999
).
29.
S. P.
Grabowski
,
M.
Schneider
,
H.
Nienhaus
,
W.
Monch
,
R.
Dimitrov
,
O.
Ambacher
, and
M.
Stutzmann
,
Appl. Phys. Lett.
78
,
2503
(
2001
).
30.
S.
Krukowski
,
P.
Kempisty
, and
P.
Strak
,
J. Appl. Phys.
114
,
063507
(
2013
).
31.
S.
Krukowski
,
P.
Kempisty
,
P.
Strak
, and
K.
Sakowski
,
J. Appl. Phys.
115
,
043529
(
2014
).
32.
P.
Kempisty
,
P.
Strak
,
K.
Sakowski
, and
S.
Krukowski
,
J. Cryst. Growth
390
,
71
(
2014
).
33.
P.
Ordejón
,
D. A.
Drabold
,
M. P.
Grumbach
, and
R. M.
Martin
,
Phys. Rev. B
48
,
14646
(
1993
).
34.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
García
,
J.
Junquera
,
P.
Ordejón
, and
D.
Sánchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
35.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
);
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
8861
(
1991
).
36.
Z.
Wu
and
R. E.
Cohen
,
Phys. Rev. B
73
,
235116
(
2006
).
37.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
38.
M.
Leszczynski
,
T.
Suski
,
H.
Teisseyre
,
P.
Perlin
,
I.
Grzegory
,
J.
Jun
,
S.
Porowski
, and
T. D.
Moustakas
,
J. Appl. Phys.
76
,
4909
(
1994
).
39.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jonsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
40.
G.
Henkelman
and
H.
Jonsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
41.
D.
Sheppard
,
R.
Terrell
, and
G.
Henkelman
,
J. Chem. Phys.
128
,
134106
(
2008
).
42.
S. R.
Bahn
and
K. W.
Jacobsen
,
Comput. Sci. Eng.
4
,
56
66
(
2002
).
43.
P.
Kempisty
,
P.
Strak
,
K.
Sakowski
, and
S.
Krukowski
,
J. Cryst. Growth
401
,
78
81
(
2014
).
44.
F.-H.
Wang
,
P.
Kruger
, and
J.
Pollman
,
Phys. Rev. B
64
,
35305
(
2001
).
45.
A. L.
Rosa
and
J.
Neugebauer
,
Phys. Rev. B
73
,
205346
(
2006
).
46.
P.
Kempisty
,
P.
Strak
, and
S.
Krukowski
,
Surf. Sci.
605
,
695
(
2011
);
P.
Kempisty
,
P.
Strak
, and
S.
Krukowski
,
Surf. Sci.
606
,
571
572
(
2012
).
47.
P.
Kempisty
and
S.
Krukowski
,
J. Appl. Phys.
112
,
113704
(
2012
).
48.
P.
Kempisty
and
S.
Krukowski
,
AIP Adv.
4
,
117109
(
2014
).
49.
M. D.
Pashley
,
Phys. Rev. B
40
,
10481
(
1989
).
50.
T.
Hughbanks
and
R.
Hoffmann
,
J. Am. Chem. Soc.
105
,
3528
(
1983
).
51.
I.
Barin
,
Thermochemical Data of Pure Substances
3rd ed. (
VCH
,
Weinheim
,
1994
).
52.
Termodinamiczeskije swojstwa indiwidualnych weszczestw
, edited by
W. P.
Glushko
(
Nauka
,
Moscow
,
1979
) (in Russian).
53.
Z.
Romanowski
,
S.
Krukowski
,
I.
Grzegory
, and
S.
Porowski
,
J. Chem. Phys.
114
,
6353
(
2001
).
54.
Z.
Romanowski
,
S.
Krukowski
,
I.
Grzegory
, and
S.
Porowski
,
J. Cryst. Growth
189–190
,
159
(
1998
).
55.
J. A.
Venables
,
Introduction to Surface and Thin Film Processes
(
Cambridge University Press
,
Cambridge
,
2000
), p.
109
.
56.
M.
Ptasinska
,
J.
Piechota
, and
S.
Krukowski
,
J. Phys. Chem C
119
,
11563
(
2015
).
You do not currently have access to this content.