We report on atom probe tomography studies of the composition at internal interfaces in Cu2ZnSnSe4 thin-films. For Cu2ZnSnSe4 precursors, which are deposited at 320 °C under Zn-rich conditions, grain boundaries are found to be enriched with Cu irrespective of whether Cu-poor or Cu-rich growth conditions are chosen. Cu2ZnSnSe4 grains are found to be Cu-poor and excess Cu atoms are found to be accumulated at grain boundaries. In addition, nanometer-sized ZnSe grains are detected at or near grain boundaries. The compositions at grain boundaries show different trends after annealing at 500 °C. Grain boundaries in the annealed absorber films, which are free of impurities, are Cu-, Sn-, and Se-depleted and Zn-enriched. This is attributed to dissolution of ZnSe at the Cu-enriched grain boundaries during annealing. Furthermore, some of the grain boundaries of the absorbers are enriched with Na and K atoms, stemming from the soda-lime glass substrate. Such grain boundaries show no or only small changes in composition of the matrix elements. Na and K impurities are also partly segregated at some of the Cu2ZnSnSe4/ZnSe interfaces in the absorber, whereas for the precursors, only Na was detected at such phase boundaries possibly due to a higher diffusivity of Na compared to K. Possible effects of the detected compositional fluctuations on cell performance are discussed.

1.
S.
Siebentritt
and
S.
Schorr
,
Prog. Photovoltaics
20
,
512
519
(
2012
).
2.
P. J.
Dale
,
K.
Hoenes
,
J.
Scragg
, and
S.
Siebentritt
, in
Proceedings of the 34th IEEE Photovoltaic Specialists Conference
(IEEE,
2009
), Vols.
1–3
, pp.
2080
2085
.
3.
D. B.
Mitzi
,
O.
Gunawan
,
T. K.
Todorov
,
K.
Wang
, and
S.
Guha
,
Sol. Energy Mater. Sol. Cells
95
,
1421
1436
(
2011
).
4.
W.
Wang
,
M. T.
Winkler
,
O.
Gunawan
,
T.
Gokmen
,
T. K.
Todorov
,
Y.
Zhu
, and
D. B.
Mitzi
,
Adv. Energy Mater.
4
,
1301465
(
2013
).
5.
P.
Jackson
,
D.
Hariskos
,
R.
Wuerz
,
O.
Kiowski
,
A.
Bauer
,
T. M.
Friedlmeier
, and
M.
Powalla
,
Phys. Status Solidi RRL
9
,
28
31
(
2015
).
6.
I. V.
Dudchak
and
L. V.
Piskach
,
J. Alloys Compd.
351
,
145
150
(
2003
).
7.
I. D.
Olekseyuk
,
I. V.
Dudchack
, and
L. V.
Piskach
,
J. Alloys Compd.
368
,
135
143
(
2004
).
8.
A.
Walsh
,
S.
Chen
,
S.
Wei
, and
X.
Gong
,
Adv. Energy Mater.
2
,
400
(
2012
).
9.
T.
Maeda
,
S.
Nakamura
, and
T.
Wada
,
Thin Solid Films
519
,
7513
7516
(
2011
).
10.
J. T.
Wätjen
,
J.
Engman
,
M.
Edoff
, and
C.
Platzer–Bjorkman
,
Appl. Phys. Lett.
100
,
173510
(
2012
).
11.
C.
Platzer-Björkman
,
J.
Scragg
,
H.
Flammersberger
,
T.
Kubart
, and
M.
Edoff
,
Sol. Energy Mater. Sol. Cells
98
,
110
117
(
2012
).
12.
A.
Redinger
,
K.
Hönes
,
X.
Fontané
,
V.
Izquierdo-Roca
,
E.
Saucedo
,
N.
Valle
,
A.
Pérez-Rodríguez
, and
S.
Siebentritt
,
Appl. Phys. Lett.
98
,
101907
(
2011
).
13.
T.
Schwarz
,
O.
Cojocaru-Mirédin
,
P.
Choi
,
M.
Mousel
,
A.
Redinger
,
S.
Siebentritt
, and
D.
Raabe
,
Appl. Phys. Lett.
102
,
042101
(
2013
).
14.
R. A.
Wibowo
,
W. S.
Kim
,
E. S.
Lee
,
B.
Munir
, and
K. H.
Kim
,
J. Phys. Chem. Solids
68
,
1908
1913
(
2007
).
15.
G.
Suresh Babu
,
Y. B.
Kishore Kumar
,
P.
Uday Bhaskar
, and
S.
Raja Vanjari
,
Sol. Energy Mater. Sol. Cells
94
,
221
226
(
2010
).
16.
A. J.
Cheng
,
M.
Manno
,
A.
Khare
,
C.
Leighton
,
S. A.
Campbell
, and
E. S.
Aydil
,
J. Vac. Sci. Technol., A
29
,
051203
(
2011
).
17.
M.
Mousel
,
A.
Redinger
,
R.
Djemour
,
M.
Arasimowicz
,
N.
Valle
,
P.
Dale
, and
S.
Siebentritt
,
Thin Solid Films
535
,
83
87
(
2013
).
18.
U.
Rau
and
J. H.
Werner
,
Appl. Phys. Lett.
84
,
3735
(
2004
).
19.
S.
Siebentritt
,
Thin Solid Films
535
,
1
4
(
2013
).
20.
R.
Scheer
and
H. W.
Schock
,
Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2011
).
21.
M.
Mousel
,
T.
Schwarz
,
R.
Djemour
,
T. P.
Weiss
,
J.
Sendler
,
J. C.
Malaquias
,
A.
Redinger
,
O.
Cojocaru-Mirédin
,
P.
Choi
, and
S.
Siebentritt
,
Adv. Energy Mater.
4
,
1300543
(
2014
).
22.
W. K.
Metzger
and
M.
Gloeckler
,
J. Appl. Phys.
98
,
063701
(
2005
).
23.
C.
Donolato
,
J. Appl. Phys.
84
,
2656
(
1998
).
24.
S.
Bag
,
O.
Gunawan
,
T.
Gokmen
,
Y.
Zhu
,
T. K.
Todorov
, and
D. B.
Mitzi
,
Energy Environ. Sci.
5
,
7060
7065
(
2012
).
25.
K.
Wang
,
B.
Shin
,
K. B.
Reuter
,
T.
Todorov
, and
D. B.
Mitzi
,
Appl. Phys. Lett.
98
,
051912
(
2011
).
26.
L.
Guo
,
Y.
Zhu
,
O.
Gunawan
,
T.
Gokmen
,
V. R.
Deline
,
S.
Ahmed
,
L. T.
Romankiw
, and
H.
Deligianni
,
Prog. Photovoltaics
22
,
58
68
(
2014
).
27.
K.
Thompson
,
D.
Lawrence
,
D. J.
Larson
,
J. D.
Olson
,
T. F.
Kelly
, and
B.
Gormann
,
Ultramicroscopy
107
,
131
(
2007
).
28.
T.
Schwarz
,
M. A. L.
Marques
,
S.
Botti
,
M.
Mousel
,
A.
Redinger
,
S.
Siebentritt
,
O.
Cojocaru-Mirédin
,
D.
Raabe
, and
P.
Choi
, “Detection of novel Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films” (submitted).
29.
F.
Vurpillot
,
A.
Cerezo
,
D.
Blavette
, and
D. J.
Larson
,
Microsc. Microanal.
10
,
384
390
(
2004
).
30.
See supplemental material at http://dx.doi.org/10.1063/1.4929874 for the overlap issue of 39K+ with NaO+ and 78Se2+ and 41K+ with Se 82Se2+, for the possible overlap of SeS+, ZnS+, and CuS+ with SeO2+, ZnO2+, and CuO2+.
31.
O. C.
Hellman
and
D. N.
Seidman
,
Mater. Sci. Eng., A
327
,
24
28
(
2002
).
32.
S.
Chen
,
A.
Walsh
,
J.
Yang
,
X. G.
Gong
,
L.
Sun
,
P.
Yang
,
J.
Chu
, and
S.
Wei
,
Phys. Rev. B
83
,
125201
(
2011
).
33.
J.
Dietrich
,
D.
Abou-Ras
,
S. S.
Schmidt
,
T.
Rissom
,
T.
Unold
,
O.
Cojocaru-Mirédin
,
T.
Niermann
,
M.
Lehmann
,
C. T.
Koch
, and
C.
Boit
,
J. Appl. Phys.
115
,
103507
(
2014
).
34.
T.
Schwarz
,
O.
Cojocaru-Mirédin
,
P.
Choi
,
M.
Mousel
,
A.
Redinger
,
S.
Siebentritt
, and
D.
Raabe
, “Study of the formation and effect on solar cell efficiency of nano-sized Cu-Sn-Se compounds in Cu2ZnSnSe4 thin-films” (unpublished).
35.
J. E.
Jaffe
and
A.
Zunger
,
Phys. Rev. B
27
,
5176
(
1983
).
36.
S.
Chen
,
X. G.
Gong
,
A.
Walsh
, and
S.
Wei
,
Appl. Phys. Lett.
94
,
041903
(
2009
).
37.
J.
Paier
,
R.
Asahi
,
A.
Nagoya
, and
G.
Kresse
,
Phys. Rev. B
79
,
115126
(
2009
).
38.
C.
Persson
,
J. Appl. Phys.
107
,
053710
(
2010
).
39.
M.
Gloeckler
,
J. R.
Sites
, and
W. K.
Metzger
,
J. Appl. Phys.
98
,
113704
(
2005
).
40.
C.
Persson
and
A.
Zunger
,
Appl. Phys. Lett.
87
,
211904
(
2005
).
41.
S.
Siebentritt
,
S.
Sadewasser
,
M.
Wimmer
,
C.
Leendertz
,
T.
Eisenbarth
, and
M. C.
Lux-Steiner
,
Phys. Rev. Lett.
97
,
146601
(
2006
).
42.
T.
Prabhakar
and
N.
Jampana
,
Sol. Energy Mater. Sol. Cells
95
,
1001
1004
(
2011
).
43.
I.
Repins
,
C.
Beall
,
N.
Vora
,
C.
DeHart
,
D.
Kuciauskas
,
P.
Dippo
,
B.
To
,
J.
Mann
,
W.
Hsu
,
A.
Goodrich
, and
R.
Noufi
,
Sol. Energy Mater. Sol. Cells
101
,
154
159
(
2012
).
44.
T.
Gershon
,
B.
Shin
,
N.
Bojarczuk
,
M.
Hopstaken
, and
D. B.
Mitzi
,
Adv. Energy Mater.
5
,
1400849
(
2015
).
45.
J. W.
Fleming
and
D. E.
Day
,
J. Am. Ceram. Soc.
55
,
186
192
(
1972
).
46.
S.
Levcenco
,
D.
Dumcenco
,
Y. P.
Wang
,
Y. S.
Huang
,
C. H.
Ho
,
E.
Arushanov
,
V.
Tezlevan
, and
K. K.
Tiong
,
Opt. Mater.
34
,
1362
1365
(
2012
).
47.
G. S.
Rohrer
,
J. Mater. Sci.
46
,
5881
5895
(
2011
).
48.
F.
Couzinié-Devy
,
N.
Barreau
, and
J.
Kessler
,
Prog. Photovoltaics
19
,
527
536
(
2011
).
49.
G.
Gottstein
,
Materialwissenschaft der Werkstofftechnik – Physikalische Grundlagen
, 4th ed. (
Springer Vieweg
,
Berlin
,
2014
), Chap. 7.
50.
J. W.
Cahn
,
Acta Metall.
10
,
789
798
(
1962
).
51.
K.
Lücke
and
H. P.
Stüwe
,
Acta Metall.
19
,
1087
1099
(
1971
).
52.
C. M.
Sutter-Fella
,
J. A.
Stückelberger
,
H.
Hagendorfer
,
F. L.
Mattina
,
L.
Kranz
,
S.
Nishiwaki
,
A. R.
Uhl
,
Y. E.
Romanyuk
, and
A. N.
Tiwari
,
Chem. Mater.
26
,
1420
1425
(
2014
).
53.
D. B.
Laks
,
C. G.
Van de Walle
,
G. F.
Neumark
, and
S. T.
Pantelides
,
Appl. Phys. Lett.
63
,
1375
(
1993
).
54.
M.
Wittmer
and
T. E.
Seidel
,
J. Appl. Phys.
49
,
5827
(
1978
).
55.
C.
Persson
and
A.
Zunger
,
Phys. Rev. Lett.
91
,
266401
(
2003
).
56.
Y.
Yan
,
R.
Noufi
, and
M. M.
Al-Jassim
,
Phys. Rev. Lett.
96
,
205501
(
2006
).

Supplementary Material

You do not currently have access to this content.