We demonstrate the integration of Nd3+ doped barium-titanium-silicate microsphere lasers with a silicon nitride photonic platform. Devices with two different geometrical configurations for extracting the laser light to buried waveguides have been fabricated and characterized. The first configuration relies on a standard coupling scheme, where the microspheres are placed over strip waveguides. The second is based on a buried elliptical geometry whose working principle is that of an elliptical mirror. In the latter case, the input of a strip waveguide is placed on one focus of the ellipse, while a lasing microsphere is placed on top of the other focus. The fabricated elliptical geometry (ellipticity = 0.9) presents a light collecting capacity that is 50% greater than that of the standard waveguide coupling configuration and could be further improved by increasing the ellipticity. Moreover, since the dimensions of the spheres are much smaller than those of the ellipses, surface planarization is not required. On the contrary, we show that the absence of a planarization step strongly damages the microsphere lasing performance in the standard configuration.

1.
T. J.
Kippenberg
,
J.
Kalkman
,
A.
Polman
, and
K. J.
Vahala
,
Phys. Rev. A
74
,
051802(R)
(
2006
).
2.
S. L.
Mccall
,
A. F. J.
Levi
,
R. E.
Slusher
,
S. J.
Pearton
, and
R. A.
Logan
,
Appl. Phys. Lett.
60
,
289
291
(
1992
).
3.
A. W.
Fang
,
R.
Jones
,
H.
Park
,
O.
Cohen
,
O.
Raday
,
M. J.
Paniccia
, and
J. E.
Bowers
,
Opt. Express
15
,
2315
(
2007
).
4.
A.
Polman
,
B.
Min
,
J.
Kalkman
,
T. J.
Kippenberg
, and
K. J.
Vahala
,
Appl. Phys. Lett.
84
,
1037
1039
(
2004
).
5.
A.
Chiasera
,
Y.
Dumeige
,
P.
Féron
,
M.
Ferrari
,
Y.
Jestin
,
G.
Nunzi Conti
,
S.
Pelli
,
S.
Soria
, and
G. C.
Righini
,
Laser Photon. Rev.
4
,
457
482
(
2010
).
6.
J.
Ward
and
O.
Benson
,
Laser Photon. Rev.
5
,
553
570
(
2011
).
7.
A. B.
Matsko
,
A. A.
Savchenkov
,
D.
Strekalov
,
V. S.
Ilchenko
, and
L.
Maleki
,
IPN Progress Report No. 42–162
,
2005
.
8.
G. C.
Righini
,
Y.
Dumeige
,
P.
Féron
,
M.
Ferrari
,
G.
Nunzi Conti
,
D.
Ristic
, and
S.
Soria
,
Riv. Nuovo Cimento
34
,
435
(
2011
).
9.
M. L.
Gorodetsky
and
V. S.
Ilchenko
,
J. Opt. Soc. Am. B
16
,
147
154
(
1999
).
10.
H.
Fan
,
S.
Hua
,
X.
Jiang
, and
M.
Xiao
,
Laser Phys. Lett.
10
,
105809
(
2013
).
11.
M.
Cai
,
O.
Painter
,
K. J.
Vahala
, and
P. C.
Sercel
,
Opt. Lett.
25
,
1430
1432
(
2000
).
12.
L. L.
Martín
,
D.
Navarro-Urrios
,
F.
Ferrarese Lupi
,
C.
Perez-Rodríguez
,
I. R.
Martín
,
J.
Montserrat
,
C.
Dominguez
,
B.
Garrido
, and
N.
Capuj
,
Laser Phys.
23
,
75801
(
2013
).
13.
J. M.
Ramirez
,
D.
Navarro-Urrios
,
N. E.
Capuj
,
Y.
Berencen
,
A.
Pitanti
,
B.
Garrido
, and
A.
Tredicucci
, Sci. Rep. (to be published); e-print arXiv:1504.03116.
14.
L.
He
,
Ş. K.
Özdemir
, and
L.
Yang
,
Laser Photon. Rev.
7
,
60
82
(
2013
).
15.
L.
Ding
,
C.
Belacel
,
S.
Ducci
,
G.
Leo
, and
I.
Favero
,
Appl. Opt.
49
(
13
),
2441
(
2010
).
16.
G. S.
Murugan
,
M.
Zervas
,
Y.
Panitchob
, and
J. S.
Wilkinson
,
Opt. Lett.
36
,
73
75
(
2011
).
17.
G. R.
Elliott
,
D. W.
Hewak
,
G. S.
Murugan
, and
J. S.
Wilkinson
,
Opt. Express
15
,
17542
17553
(
2007
).
18.
F.
Ferrarese Lupi
,
D.
Navarro-Urrios
,
J.
Rubio-Garcia
,
J.
Monserrat
,
C.
Dominguez
,
P.
Pellegrino
, and
B.
Garrido
,
J. Lightwave Technol.
30
,
169
(
2012
).
19.
D.
Navarro-Urrios
,
M.
Baselga
,
F.
Ferrarese Lupi
,
L. L.
Martín
,
C.
Pérez-Rodríguez
,
V.
Lavin
,
I. R.
Martín
,
B.
Garrido
, and
N. E.
Capuj
,
J. Opt. Soc. Am. B
29
,
3293
3298
(
2012
).
20.
J. E.
Geusic
,
H. M.
Marcos
, and
L. G.
Van Uitert
,
Appl. Phys. Lett.
4
,
182
184
(
1964
).
21.
M.
Ghulinyan
,
R.
Guider
,
G.
Pucker
, and
L.
Pavesi
,
IEEE Photon. Technol. Lett.
23
,
1166
(
2011
).
You do not currently have access to this content.