The piezoelectric effect of ZnO has been investigated recently with the goal to modify metal/semiconductor Schottky-barriers and p-n-junctions by application of mechanical stress. This research area called “piezotronics” is so far focused on nano structured ZnO wires. At the same time, ZnO varistor materials are already widely utilized and may benefit from a piezotronic approach. In this instance, the grain boundary potential barriers in the ceramic can be tuned by mechanical stress. Polycrystalline varistors exhibit huge changes of resistivity upon applied electrical and mechanical fields and therefore offer descriptive model systems to study the piezotronic effect. If the influence of temperature is contemplated, our current mechanistic understanding can be interrogated and corroborated. In this paper, we present a physical model based on parallel conducting pathways. This affords qualitative and semi-quantitative rationalization of temperature dependent electrical properties. The investigations demonstrate that narrow conductive pathways contribute to the overall current, which becomes increasingly conductive with application of mechanical stress due to lowering of the barrier height. Rising temperature increases the thermionic current through the rest of the material with higher average potential barriers, which are hardly affected by the piezoelectric effect. Hence, relative changes in resistance due to application of stress are higher at low temperature.

1.
K.
Hübner
,
Phys. Status Solidi b
57
,
627
(
1973
).
2.
O.
Ambacher
,
B.
Foutz
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
A. J.
Sierakowski
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
A.
Mitchell
, and
M.
Stutzmann
,
J. Appl. Phys.
87
,
334
(
2000
).
3.
O.
Ambacher
,
J.
Smart
,
J. R.
Shealy
,
N. G.
Weimann
,
K.
Chu
,
M.
Murphy
,
W. J.
Schaff
,
L. F.
Eastman
,
R.
Dimitrov
,
L.
Wittmer
,
M.
Stutzmann
,
W.
Rieger
, and
J.
Hilsenbeck
,
J. Appl. Phys.
85
,
3222
(
1999
).
4.
W.
Rieger
,
T.
Metzger
,
H.
Angerer
,
R.
Dimitrov
,
O.
Ambacher
, and
M.
Stutzmann
,
Appl. Phys. Lett.
68
,
970
(
1996
).
5.
L.
Shen
,
S.
Heikman
,
B.
Moran
,
R.
Coffie
,
N. Q.
Zhang
,
D.
Buttari
,
I. P.
Smorchkova
,
S.
Keller
,
S. P.
DenBaars
, and
U. K.
Mishra
,
IEEE Electron Device Lett.
22
,
457
(
2001
).
6.
K. A.
Jones
,
T. P.
Chow
,
M.
Wraback
,
M.
Shatalov
,
Z.
Sitar
,
F.
Shahedipour
,
K.
Udwary
, and
G. S.
Tompa
,
J. Mater. Sci.
50
,
3267
(
2015
).
7.
X.
Wang
,
J.
Zhou
,
J.
Song
,
J.
Liu
,
N.
Xu
, and
Z. L.
Wang
,
Nano Lett.
6
,
2768
(
2006
).
8.
Y.
Zhang
,
Y.
Liu
, and
Z. L.
Wang
,
Adv. Mater.
23
,
3004
(
2011
).
9.
Z. L.
Wang
and
W.
Wu
,
Natl. Sci. Rev.
1
,
62
(
2014
).
10.
Z. L.
Wang
,
Adv. Mater.
19
,
889
(
2007
).
11.
J.
Zhou
,
Y.
Gu
,
P.
Fei
,
W.
Mai
,
Y.
Gao
,
R.
Yang
,
G.
Bao
, and
Z. L.
Wang
,
Nano Lett.
8
,
3035
(
2008
).
12.
J.
Zhou
,
P.
Fei
,
Y.
Gu
,
W.
Mai
,
Y.
Gao
,
R.
Yang
,
G.
Bao
, and
Z. L.
Wang
,
Nano Lett.
8
,
3973
(
2008
).
13.
X.
Wang
,
J.
Song
,
J.
Liu
, and
Z. L.
Wang
,
Science
316
,
102
(
2007
).
14.
I. B.
Kobiakov
,
Solid State Commun.
35
,
305
(
1980
).
15.
J.
Pal
,
G.
Tse
,
V.
Haxha
,
M. A.
Migliorato
, and
S.
Tomić
,
Phys. Rev. B
84
,
085211
(
2011
).
16.
H. Y. S.
Al-Zahrani
,
J.
Pal
, and
M. A.
Migliorato
,
Nano Energy
2
,
1214
(
2013
).
17.
H. Y. S.
Al-Zahrani
,
J.
Pal
,
M. A.
Migliorato
,
G.
Tse
, and
D.
Yu
,
Nano Energy
14
,
382
(
2015
).
18.
D. R.
Clarke
,
J. Am. Ceram. Soc.
82
,
485
(
1999
).
19.
P. M.
Verghese
and
D. R.
Clarke
,
J. Appl. Phys.
87
,
4430
(
2000
).
20.
P. R.
Emtage
,
J. Appl. Phys.
48
,
4372
(
1977
).
21.
T. K.
Gupta
,
M. P.
Mathur
, and
W. G.
Carlson
,
J. Electron. Mater.
6
,
483
(
1977
).
22.
J.
Wong
and
F. P.
Bundy
,
Appl. Phys. Lett.
29
,
49
(
1976
).
23.
R.
Baraki
,
N.
Novak
,
T.
Frömling
,
T.
Granzow
, and
J.
Rödel
,
Appl. Phys. Lett.
105
,
111604
(
2014
).
24.
G.
Blatter
and
F.
Greuter
,
Phys. Rev. B
33
,
3952
(
1986
).
25.
G.
Blatter
and
F.
Greuter
,
Phys. Rev. B
34
,
8555
(
1986
).
26.
F.
Greuter
and
G.
Blatter
,
Semicond. Sci. Technol.
5
,
111
(
1990
).
27.
G. E.
Pike
and
C. H.
Seager
,
J. Appl. Phys.
50
,
3414
(
1979
).
28.
M. S.
Castro
,
G. M.
Nuñez
,
D. E.
Resasco
, and
C. M.
Aldao
,
J. Am. Ceram. Soc.
75
,
800
(
1992
).
29.
S.-T.
Li
,
Y.
Yang
,
L.
Zhang
,
P.-F.
Cheng
, and
J.-Y.
Li
,
Chin. Phys. Lett.
26
,
077201
(
2009
).
30.
A.
Vojta
and
D. R.
Clarke
,
J. Appl. Phys.
81
,
985
(
1997
).
31.
A.
Vojta
,
Q. Z.
Wen
, and
D. R.
Clarke
,
Comput. Mater. Sci.
6
,
51
(
1996
).
32.
M.
Bartkowiak
,
G. D.
Mahan
,
F. A.
Modine
,
M. A.
Alim
,
R.
Lauf
, and
A.
McMillan
,
J. Appl. Phys.
80
,
6516
(
1996
).
33.
H.
Wang
,
M.
Bartkowiak
,
F. A.
Modine
,
R. B.
Dinwiddie
,
L. A.
Boatner
, and
G. D.
Mahan
,
J. Am. Ceram. Soc.
81
,
2013
(
1998
).
34.
Y.
Sato
,
M.
Yodogawa
,
T.
Yamamoto
,
N.
Shibata
, and
Y.
Ikuhara
,
Appl. Phys. Lett.
86
,
152112
(
2005
).
35.
N.
Raidl
,
P.
Supancic
,
R.
Danzer
, and
M.
Hofstätter
,
Adv. Mater.
27
,
2031
(
2015
).
36.
R. T.
Tung
,
Appl. Phys. Lett.
58
,
2821
(
1991
).
37.
R. T.
Tung
,
Phys. Rev. B
45
,
13509
(
1992
).
38.
J. H.
Werner
and
H. H.
Güttler
,
Phys. Scr.
1991
,
258
.
39.
J. H.
Werner
and
H. H.
Güttler
,
J. Appl. Phys.
69
,
1522
(
1991
).
40.
D. F.
Crisler
,
J. J.
Cupal
, and
A. R.
Moore
,
Proc. Inst. Electr. Electron. Eng.
56
,
225
(
1968
).
41.
P. Q.
Mantas
and
J. L.
Baptista
,
J. Eur. Ceram. Soc.
15
,
605
(
1995
).
You do not currently have access to this content.