We investigated the optical properties of amorphous and crystalline antimony (Sb)-doped tin dioxide (SnO2) thin films grown using the co-sputtering deposition method at room temperature. We used undoped and Sb-doped (8 wt. %) SnO2 targets. Varying the relative power ratio of the two targets, we controlled the Sb-composition of the SnO2:Sb thin films up to 2.3 at. % of Sb contents. Through annealing, the as-grown amorphous SnO2:Sb thin films were transformed to crystalline thin films. Dielectric functions were obtained from the measured ellipsometry angles, Ψ and Δ, using the Drude and parametric optical constant models. We determined the absorption coefficients and optical gap energies of the SnO2:Sb thin films from the dielectric functions. We found increasing optical gap energy with increasing Sb composition. Increases in the Drude tail amplitudes, a signature of free carrier concentrations, were found in annealed, crystalline thin films with increasing Sb composition. The increase in the optical gap energy with increasing Sb composition was mainly attributed to the Burstein-Moss effect. Using Hall effect measurements, we obtained Hall carrier concentrations (NHall) and electron Hall mobilities (μHall). The carrier concentrations and mobilities increased from 2.6 × 1019 cm−3 and 1.0 cm2/(V s) to 2.0 × 1020 cm−1 and 7.2 cm2/(V s), respectively, with increasing Sb contents. This result suggests that the nominally undoped SnO2 films are unintentionally n-type doped. Assuming that the NHall and optical carrier concentrations (Nopt) were the same, we obtained the effective masses of the SnO2:Sb thin films with increasing Sb compositions. The effective masses of the SnO2:Sb thin films increased from 0.245 m0 to 0.4 m0 with increasing Sb doping contents, and the nonparabolicity of the conduction band was estimated. We discussed the relation between the optical (μopt) and Hall (μHall) mobilities as a function of Sb contents and grain sizes.

1.
T.
Minami
,
MRS Bulletin
25
,
38
44
(
2000
).
2.
H.-K.
Jang
,
J.-W.
Park
,
S.
Kim
,
S.-H.
Choi
, and
H.
Lee
,
J. Korean Phys. Soc.
61
,
2005
(
2012
).
3.
M. E.
White
,
O.
Bierwagen
,
M. Y.
Tsai
, and
J. S.
Speck
,
J. Appl. Phys.
106
,
093704
(
2009
).
4.
Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, No. 894595 (
2002
).
5.
S. S.
Lekshmy
,
G. P.
Daniel
, and
K.
Joy
,
Appl. Surf. Sci.
274
,
95
(
2013
).
6.
C.
Terrier
,
J. P.
Chatelon
,
J. A.
Roger
,
R.
Berjoan
, and
C.
Dubois
,
J. Sol-Gel Sci. Technol.
10
,
75
(
1997
).
7.
A. J.
de Vries
,
E. S.
Kooij
,
H.
Wormeester
,
A. A.
Mewe
, and
B.
Poelsema
,
J. Appl. Phys.
101
,
053703
(
2007
).
8.
B.
Johs
,
C. M.
Herzinger
,
J. H.
Dinan
,
A.
Cornfeld
, and
J. D.
Benson
,
Thin Solid Films
313/314
,
137
(
1998
).
9.
G.
Rey
,
C.
Ternon
,
M.
Modreanu
,
X.
Mescot
,
V.
Consonni
, and
D.
Bellet
,
J. Appl. Phys.
114
,
183713
(
2013
).
10.
M.
Akagawa
and
H.
Fujiwara
,
J. Appl. Phys.
110
,
073518
(
2011
).
11.
K. J.
Button
,
C. G.
Fonstad
, and
W.
Dreybrodt
,
Phys. Rev. B
4
,
4539
(
1971
).
12.
T.
Pisarkiewicz
,
K.
Zakrzewska
, and
E.
Leja
,
Thin Solid Films
174
,
217
(
1989
).
13.
H.
Fujiwara
and
M.
Kondo
,
Phys. Rev. B
71
,
075109
(
2005
).
14.
G.
Sanon
,
R.
Rup
, and
A.
Mansingh
,
Phys. Rev. B
44
,
5672
(
1991
).
15.
A.
Schleife
,
J. B.
Varley
,
F.
Fuchs
,
C.
Rödl
,
F.
Bechstedt
,
P.
Rinke
,
A.
Janotti
, and
C. G.
Van de Walle
,
Phys. Rev. B
83
,
035116
(
2011
).
16.
B.
Bissig
,
T.
Jäger
,
L.
Ding
,
A. N.
Tiwari
, and
Y. E.
Romanyuk
,
APL Mater.
3
,
062802
(
2015
).
17.
E.
Shanthi
,
A.
Banerjee
,
V.
Dutta
, and
K. L.
Chopra
,
J. Appl. Phys.
53
,
1615
(
1982
).
18.
B.
Stjerna
,
E.
Olsson
, and
C. G.
Granqvist
,
J. Appl. Phys.
76
,
3797
(
1994
).
19.
Y.-Y.
Lin
,
H.-Y.
Lee
,
C.-S.
Ku
,
L.-W.
Chou
, and
A. T.
Wu
,
Appl. Phys. Lett.
102
,
111912
(
2013
).
20.
J. P.
Allen
,
J. J.
Carey
,
A.
Walsh
,
D. O.
Scanlon
, and
G. W.
Watson
,
J. Phys. Chem. C
117
,
14759
(
2013
).
21.
F. J.
Ferrer
,
J.
Gil-Rostra
,
A.
Terriza
,
G.
Rey
,
C.
Jimenez
,
J.
Garcia-Lopez
, and
F.
Yubero
,
Nucl. Instrum. Methods Phys. Res. B
274
,
65
(
2012
).
You do not currently have access to this content.