We report on the observation of a radiation helicity sensitive photocurrent excited by terahertz (THz) radiation in dual-grating-gate (DGG) InAlAs/InGaAs/InAlAs/InP high electron mobility transistors (HEMT). For a circular polarization, the current measured between source and drain contacts changes its sign with the inversion of the radiation helicity. For elliptically polarized radiation, the total current is described by superposition of the Stokes parameters with different weights. Moreover, by variation of gate voltages applied to individual gratings, the photocurrent can be defined either by the Stokes parameter defining the radiation helicity or those for linear polarization. We show that artificial non-centrosymmetric microperiodic structures with a two-dimensional electron system excited by THz radiation exhibit a dc photocurrent caused by the combined action of a spatially periodic in-plane potential and spatially modulated light. The results provide a proof of principle for the application of DGG HEMT for all-electric detection of the radiation's polarization state.

1.
W.
Knap
and
M.
Dyakonov
, “
Plasma wave THz detectors and emitters
,” in
Handbook of Terahertz Technology
, edited by
D.
Saeedkia
(
Woodhead Publishing
,
Waterloo, Canada
,
2013
), pp.
121
155
.
2.
W.
Knap
,
S.
Rumyantsev
,
M. S.
Pea Vitiello
,
D.
Coquillat
,
S.
Blin
,
N.
Dyakonova
,
M.
Shur
,
F.
Teppe
,
A.
Tredicucci
, and
T.
Nagatsuma
,
Nanotechnology
24
,
214002
(
2013
).
3.
S.
Boppel
,
A.
Lisauskas
,
A.
Max
,
V.
Krozer
, and
H. G.
Roskos
,
Opt. Lett.
37
,
536
(
2012
).
4.
V. M.
Muravev
and
I. V.
Kukushkin
,
Appl. Phys. Lett.
100
,
082102
(
2012
).
5.
M.
Tonouchi
,
Nat. Photonics
1
,
97
(
2007
).
6.
F.
Schuster
,
D.
Coquillat
,
H.
Videlier
,
M.
Sakowicz
,
F.
Teppe
,
L.
Dussopt
,
B.
Giffard
,
T.
Skotnicki
, and
W.
Knap
,
Opt. Express
19
,
7827
(
2011
).
7.
G. C.
Dyer
,
S.
Preu
,
G. R.
Aizin
,
J.
Mikalopas
,
A. D.
Grine
,
J. L.
Reno
,
J. M.
Hensley
,
N. Q.
Vinh
,
A. C.
Gossard
,
M. S.
Sherwin
,
S. J.
Allen
, and
E. A.
Shaner
,
Appl. Phys. Lett.
100
,
083506
(
2012
).
8.
S.
Preu
,
M.
Mittendorff
,
S.
Winnerl
,
H.
Lu
,
A. C.
Gossard
, and
H. B.
Weber
,
Opt. Express
21
,
17941
(
2013
).
9.
T.
Watanabe
,
S. A.
Boubanga-Tombet
,
Y.
Tanimoto
,
D.
Fateev
,
V.
Popov
,
D.
Coquillat
,
W.
Knap
,
Y. M.
Meziani
,
Y.
Wang
,
H.
Minamide
,
H.
Ito
, and
T.
Otsuji
,
IEEE Sens. J.
13
,
89
(
2013
).
10.
D. B.
But
,
C.
Drexler
,
M. V.
Sakhno
,
N.
Dyakonova
,
O.
Drachenko
,
F. F.
Sizov
,
A.
Gutin
,
S. D.
Ganichev
, and
W.
Knap
,
J. Appl. Phys.
115
,
164514
(
2014
).
11.
W.
Knap
,
D. B.
But
,
N.
Dyakonova
,
D.
Coquillat
,
A.
Gutin
,
O.
Klimenko
,
S.
Blin
,
F.
Teppe
,
M. S.
Shur
,
T.
Nagatsuma
,
S. D.
Ganichev
, and
T.
Otsuji
,
Recent Results on Broadband Nanotransistor Based THz Detectors
, NATO Science for Peace and Security Series B, Physics and Biophysics: THz and Security Applications, edited by
C.
Corsi
and
F.
Sizov
(
Springer
,
Dordrecht, Netherlands
,
2014
), pp.
189
210
.
12.
M.
Dyakonov
and
M. S.
Shur
,
IEEE Trans. Electron. Dev.
43
(
3
),
380
(
1996
).
13.
W.
Knap
,
Y.
Deng
,
S.
Rumyantsev
,
J.-Q.
Lu
,
M. S.
Shur
,
C. A.
Saylor
, and
L. C.
Brunel
,
Appl. Phys. Lett.
80
,
3433
(
2002
).
14.
W.
Knap
,
V.
Kachorovskii
,
Y.
Deng
,
S.
Rumyantsev
,
J.-Q.
Lu
,
R.
Gaska
,
M. S.
Shur
,
G.
Simin
,
X.
Hu
,
M.
Asif Khan
,
C. A.
Saylor
, and
L. C.
Brunel
,
J. Appl. Phys.
91
,
9346
(
2002
).
15.
T.
Otsuji
,
M.
Hanabe
,
T.
Nishimura
, and
E.
Sano
,
Opt. Express
14
,
4815
(
2006
).
16.
S.
Sassine
,
Yu.
Krupko
,
J.-C.
Portal
,
Z. D.
Kvon
,
R.
Murali
,
K. P.
Martin
,
G.
Hill
, and
A. D.
Wieck
,
Phys. Rev. B
78
,
045431
(
2008
).
17.
D.
Coquillat
,
S.
Nadar
,
F.
Teppe
,
N.
Dyakonova
,
S.
Boubanga-Tombet
,
W.
Knap
,
T.
Nishimura
,
T.
Otsuji
,
Y. M.
Meziani
,
G. M.
Tsymbalov
, and
V. V.
Popov
,
Opt. Express
18
,
6024
(
2010
).
18.
V. V.
Popov
,
J. Infrared Millimeter THz Waves
32
,
1178
(
2011
).
19.
G. C.
Dyer
,
G. R.
Aizin
,
J. L.
Reno
,
E. A.
Shaner
, and
S. J.
Allen
,
IEEE J. Sel. Top. Quantum Electron.
17
,
85
(
2011
).
20.
V. V.
Popov
,
D. V.
Fateev
,
T.
Otsuji
,
Y. M.
Meziani
,
D.
Coquillat
, and
W.
Knap
,
Appl. Phys. Lett.
99
,
243504
(
2011
).
21.
E. S.
Kannan
,
I.
Bisotto
,
J.-C.
Portal
,
T. J.
Beck
, and
L.
Jalabert
,
Appl. Phys. Lett.
101
,
143504
(
2012
).
22.
V. V.
Popov
,
Appl. Phys. Lett.
102
,
253504
(
2013
).
23.
P.
Olbrich
,
E. L.
Ivchenko
,
T.
Feil
,
R.
Ravash
,
S. D.
Danilov
,
J.
Allerdings
,
D.
Weiss
, and
S. D.
Ganichev
,
Phys. Rev. Lett.
103
,
090603
(
2009
).
24.
E. L.
Ivchenko
and
S. D.
Ganichev
,
JETP Lett.
93
,
673
(
2011
).
25.
P.
Olbrich
,
J.
Karch
,
E. L.
Ivchenko
,
J.
Kamann
,
B.
Maerz
,
M.
Fehrenbacher
,
D.
Weiss
, and
S. D.
Ganichev
,
Phys. Rev. B
83
,
165320
(
2011
).
26.
A. V.
Nalitov
,
L. E.
Golub
, and
E. L.
Ivchenko
,
Phys. Rev. B
86
,
115301
(
2012
).
27.
I. V.
Rozhansky
,
V. Yu.
Kachorovskii
, and
M. S.
Shur
,
Phys. Rev. Lett.
114
,
246601
(
2015
).
28.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
John Wiley & Sons
,
New York
,
2003
).
29.
S. D.
Ganichev
,
E. L.
Ivchenko
, and
W.
Prettl
,
Physica E
14
,
166
(
2002
).
30.
S. N.
Danilov
,
B.
Wittmann
,
P.
Olbrich
,
W.
Eder
,
W.
Prettl
,
L. E.
Golub
,
E. V.
Beregulin
,
Z. D.
Kvon
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
,
V. A.
Shalygin
,
N. Q.
Vinh
,
A. F. G.
van der Meer
,
B.
Murdin
, and
S. D.
Ganichev
,
J. Appl. Phys.
105
,
013106
(
2009
).
31.
S. D.
Ganichev
,
J.
Kiermaier
,
W.
Weber
,
S. N.
Danilov
,
D.
Schuh
,
Ch.
Gerl
,
W.
Wegscheider
,
D.
Bougeard
,
G.
Abstreiter
, and
W.
Prettl
,
Appl. Phys. Lett.
91
,
091101
(
2007
).
32.
S. D.
Ganichev
,
W.
Weber
,
J.
Kiermaier
,
S. N.
Danilov
,
D.
Schuh
,
W.
Wegscheider
,
Ch.
Gerl
,
D.
Bougeard
,
G.
Abstreiter
, and
W.
Prettl
,
J. Appl. Phys.
103
,
114504
(
2008
).
33.
D.
Nguyen
,
K.
Hogan
,
A.
Blew
, and
M.
Cordes
,
J. Cryst. Growth
272
,
59
(
2004
).
34.
T.
Enoki
,
H.
Yokoyama
,
Y.
Umeda
, and
T.
Otsuji
,
Jpn. J. Appl. Phys., Part 1
37
,
1359
(
1998
).
35.
S. D.
Ganichev
,
S. A.
Tarasenko
,
V. V.
Bel'kov
,
P.
Olbrich
,
W.
Eder
,
D. R.
Yakovlev
,
V.
Kolkovsky
,
W.
Zaleszczyk
,
G.
Karczewski
,
T.
Wojtowicz
, and
D.
Weiss
,
Phys. Rev. Lett.
102
,
156602
(
2009
).
36.
J.
Karch
,
P.
Olbrich
,
M.
Schmalzbauer
,
C.
Zoth
,
C.
Brinsteiner
,
M.
Fehrenbacher
,
U.
Wurstbauer
,
M. M.
Glazov
,
S. A.
Tarasenko
,
E. L.
Ivchenko
,
D.
Weiss
,
J.
Eroms
,
R.
Yakimova
,
S.
Lara-Avila
,
S.
Kubatkin
, and
S. D.
Ganichev
,
Phys. Rev. Lett.
105
,
227402
(
2010
).
37.
S. D.
Ganichev
,
Physica B
273–274
,
737
742
(
1999
).
38.
J.
Karch
,
C.
Drexler
,
P.
Olbrich
,
M.
Fehrenbacher
,
M.
Hirmer
,
M. M.
Glazov
,
S. A.
Tarasenko
,
E. L.
Ivchenko
,
B.
Birkner
,
J.
Eroms
,
D.
Weiss
,
R.
Yakimova
,
S.
Lara-Avila
,
S.
Kubatkin
,
M.
Ostler
,
T.
Seyller
, and
S. D.
Ganichev
,
Phys. Rev. Lett.
107
,
276601
(
2011
).
39.
M. M.
Glazov
and
S. D.
Ganichev
,
Phys. Rep.
535
,
101
(
2014
).
40.
S. D.
Ganichev
and
W.
Prettl
,
Intense Terahertz Excitation of Semiconductors
(
Oxford University Press
, Oxford,
2006
).
41.
While being detected in all reported measurements, a polarization independent offset given by the coefficient j0 will not be discussed in detail. Instead, hereafter we focus on helicity sensitive photocurrent, jC, and currents driven by linearly polarized light, j1 and j2.
42.
M.
Sakowicz
,
M. B.
Lifshits
,
O. A.
Klimenko
,
F.
Schuster
,
D.
Coquillat
,
F.
Teppe
, and
W.
Knap
,
J. Appl. Phys.
110
,
054512
(
2011
).
43.
D.
Coquillat
,
V.
Nodjiadjim
,
A.
Konczykowska
,
M.
Riet
,
N.
Dyakonova
,
C.
Consejo
,
F.
Teppe
,
J.
Godin
, and
W.
Knap
, in
Digest of International Conference on Infrared, Millimeter, and Terahertz Waves
,
Tucson, USA
,
2014
.
44.
Note that signal variation with polarization is, apart the offset, identical with that of s1, therefore this polarization dependence can also be used to describe the j1-related photocurrent behavior.
45.
C.
Drexler
,
N.
Dyakonova
,
P.
Olbrich
,
J.
Karch
,
M.
Schafberger
,
K.
Karpierz
,
Yu.
Mityagin
,
M. B.
Lifshits
,
F.
Teppe
,
O.
Klimenko
,
Y. M.
Meziani
,
W.
Knap
, and
S. D.
Ganichev
,
J. Appl. Phys.
111
,
124504
(
2012
).
46.
K. S.
Romanov
and
M. I.
Dyakonov
,
Appl. Phys. Lett.
102
,
153502
(
2013
).
47.

All previous works aimed to the radiation induced ratchet effects discuss the case of unconnected parallel metal stripes: a system belonging to Cs point group symmetry consisting of the identity element and the reflection in the plane perpendicular to the stripes.22–27 For this symmetry, circular photocurrent jC and the photocurrent j2 can be generated along stripes only whereas polarization independent offset j0 and photocurrent j1 are allowed in the perpendicular to that direction (source-drain). Design of our DDG structures with interconnected metal stripes in each of gates excludes reflection plane reducing the point group symmetry to C1. As a result, the symmetry does not imply any restrictions and the photocurrent includes all four individual contributions (j0, j1, j2 and jC) which are allowed in any in-plain direction. More details on the symmetry analysis of photocurrents in quantum wells of C1 symmetry can be found in Refs. 48 and 49.

48.
B.
Wittmann
,
S. N.
Danilov
,
V. V.
Bel'kov
,
S. A.
Tarasenko
,
E. G.
Novik
,
H.
Buhmann
,
C.
Brüne
,
L. W.
Molenkamp
,
E. L.
Ivchenko
,
Z. D.
Kvon
,
N. N.
Mikhailov
,
S. A.
Dvoretsky
,
N. Q.
Vinh
,
A. F. G.
van der Meer
,
B.
Murdin
, and
S. D.
Ganichev
,
Semicond. Sci. Technol.
25
,
095005
(
2010
).
49.
V. V.
Bel'kov
and
S. D.
Ganichev
,
Semicond. Sci. Technol.
23
,
114003
(
2008
).
50.
V. V.
Popov
,
D. V.
Fateev
,
E. L.
Ivchenko
, and
S. D.
Ganichev
,
Phys. Rev. B
91
,
235436
(
2015
).
51.
V. A.
Shalygin
,
H.
Diehl
,
Ch.
Hoffmann
,
S. N.
Danilov
,
T.
Herrle
,
S. A.
Tarasenko
,
D.
Schuh
,
Ch.
Gerl
,
W.
Wegscheider
,
W.
Prettl
, and
S. D.
Ganichev
,
JETP Lett.
84
,
570
(
2007
).
You do not currently have access to this content.