This paper presents an electromagnetic modeling of a grounded metallic truncated cone to be used for calibration purposes of a microwave imaging system. The basic idea is to demonstrate the equivalence between the cone and a cylinder having a suitable radius, in order to simplify the computation of its capacity with respect to ground. A mathematical expression for the capacitance of the uniform cylinder is presented, and its validity is confirmed by comparing the data provided by this formula with numerical values given by a commercial simulator. Starting fromthis analytic result, the model of the cone is presented, and a procedure for the choice of the cylinder radius is discussed in detail. This methodology can be applied to calculate the contribution to the stray capacitance of a metallic tip used for scanning probe microscopy, and specifically for microwave sensing applications. In particular, the capacitance due to the conic part of the probe can be quantified, an operation that is usually a difficult task when trying to separate it from contribution of the experimental setup. In our opinion, this issue is very important to improve the accuracy of system calibration in the scanning microwave microscopy technique.

1.
A.
Imtiaz
,
T. M.
Wallis
, and
P.
Kabos
, “
Near-field scanning microwave microscopy: An emerging research tool for nanoscale metrology
,” in
IEEE Microwave Magazine
15
,
52
64
(
2014
).
2.
G. M.
Sacha
,
E.
Sahagun
, and
J. J.
Saenz
, “
A method for calculating capacitances and electrostatic forces in atomic force microscopy
,”
J. Appl. Phys.
101
(
2
),
024310.1
024310.4
(
2007
).
3.
S.
Hudlet
,
M.
Saint Jean
,
C.
Guthmann
, and
J.
Berger
, “
Evaluation of the capacitive force between an atomic force microscopy tip and a metallic surface
,”
Eur. Phys. J. B
2
(
1
),
5
10
(
1998
).
4.
B. M.
Law
and
F.
Rieutord
, “
Electrostatic forces in atomic force microscopy
,”
Phys. Rev. B
66
(
3
),
035402
(
2002
).
5.
K.
Lai
,
W.
Kundhikanjana
,
M. A.
Kelly
, and
Z.-X.
Shen
, “
Modeling of cantilever-based near-field scanning microwave microscope
,”
Rev. Sci. Instrum.
79
,
063703
(
2008
).
6.
L.
Fumagalli
,
G.
Ferrari
,
M.
Sampietro
, and
G.
Gomila
, “
Dielectric-constant measurement of thin insulating films at low frequency by nanoscale capacitance microscopy
,”
Appl. Phys. Lett.
91
(
24
),
243110.1
243110.3
(
2007
).
7.
G.
Gomila
,
J.
Toset
, and
L.
Fumagalli
, “
Nanoscale capacitance microscopy of thin dielectric films
,”
J. Appl. Phys.
104
(
2
),
024315.1
024315.8
(
2008
).
8.
G.
Gramse
,
I.
Caruso
,
J.
Toset
,
L.
Fumagalli
, and
G.
Gomila
, “
Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy
,”
Nanotechnology
20
,
3957021
8
(
2009
).
9.
L.
Fumagalli
,
G.
Gramse
,
D.
Esteban-Ferrer
,
M. A.
Edwards
, and
G.
Gomila
, “
Quantifying the dielectric constant of thick insulators using electrostatic force microscopy
,”
Appl. Phys. Lett.
96
(
18
),
183107.1
183107.3
(
2010
).
10.
L.
Fumagalli
,
M. A.
Edwards
, and
G.
Gomila
, “
Quantitative electrostatic force microscopy with sharp silicon tips
,”
Nanotechnology
25
,
495701
(
2014
).
11.
G.
Gomila
,
G.
Gramse
, and
L.
Fumagalli
, “
Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films
,”
Nanotechnology
25
,
255702
(
2014
).
12.
See http://www.nanoworld.com for details about typical manufacturing processes and shapes of AFM tips used for both AFM and SMM purposes.
13.
R. W.
Scharstein
, “
Capacitance of a tube
,”
J. Electrost.
65
(
1
),
21
29
(
2007
).
14.
P.
Azimi
and
H.
Golnabi
, “
Precise formulation of electrical capacitance for a cylindrical capacitive sensor
,”
J. Appl. Sci.
9
(
8
),
1556
1561
(
2009
).
15.
H.
Golnabi
and
P.
Azimi
, “
Design and performance of a cylindrical capacitive sensor to monitor the electrical properties
,”
J. Appl. Sci.
8
(
9
),
1699
1705
(
2008
).
16.
F.
Alessandri
,
G.
Bartolucci
, and
R.
Sorrentino
, “
Admittance matrix formulation of waveguide discontinuity problems: Computer-aided design of branch guide directional couplers
,”
IEEE Trans. Microwave Theory Tech.
36
(
2
),
394
403
(
1988
).
17.
J.
Vanderlinde
,
Classical Electromagnetic Theory
(
John Wiley and Sons
,
1993
).
You do not currently have access to this content.