Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

1.
P.
Müuhlschlegel
,
H. J.
Eisler
,
O. J. F.
Martin
,
B.
Hecht
, and
D. W.
Pohl
, “
Resonant optical antennas
,”
Science
308
,
1607
(
2005
).
2.
G. A.
Crosby
and
J. N.
Demas
, “
Measurement of photoluminescence quantum yields. Review
,”
J. Phys. Chem.
75
,
991
(
1971
).
3.
C.
Würth
,
M.
Grabolle
,
J.
Pauli
,
M.
Spieles
, and
U.
Resch-Genger
, “
Relative and absolute determination of fluorescence quantum yields of transparent samples
,”
Nat. Protoc.
8
,
1535
(
2013
).
4.
A.
Kwadrin
and
A. F.
Koenderink
, “
Gray-tone lithography implementation of Drexhage's method for calibrating radiative and nonradiative decay constants of fluorophores
,”
J. Phys. Chem. C
116
,
16666
(
2012
).
5.
P.
Lunnemann
,
F. T.
Rabouw
,
R. J. A.
van Dijk-Moes
,
F.
Pietra
,
D.
Vanmaekelbergh
, and
A. F.
Koenderink
, “
Calibrating and controlling the quantum efficiency distribution of inhomogeneously broadened quantum rods by using a mirror ball
,”
ACS Nano
7
,
5984
(
2013
).
6.
L.
Porres
,
A.
Holland
,
L.-O.
Pålsson
,
A. P.
Monkman
,
C.
Kemp
, and
A.
Beeby
, “
Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere
,”
J. Fluoresc.
16
,
267
(
2006
).
7.
D. O.
Faulkner
,
J. J.
McDowell
,
A. J.
Price
,
D. D.
Perovic
,
N. P.
Kherani
, and
G. A.
Ozin
, “
Measurement of absolute photoluminescence quantum yields using integrating spheres—Which way to go?
,”
Laser Photonics Rev.
6
,
802
(
2012
).
8.
J. R.
Lakowicz
,
Principles of Fluorescence Spectroscopy
(
Springer
,
2009
).
9.
V.
Giannini
,
J. A.
Sánchez-Gil
,
O. L.
Muskens
, and
J.
Gómez Rivas
, “
Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: Nanoantenna-enhanced fluorescence
,”
J. Opt. Soc. Am. B
26
,
1569
(
2009
).
10.
J.
Wenger
, “
Fluorescence enhancement factors on optical antennas: Enlarging the experimental values without changing the antenna design
,”
Int. J. Opt.
2012
,
828121
(
2012
).
11.
S.
Kühn
,
U.
Håkanson
,
L.
Rogobete
, and
V.
Sandoghdar
, “
Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna
,”
Phys. Rev. Lett.
97
,
017402
(
2006
).
12.
P.
Anger
,
P.
Bharadwaj
, and
L.
Novotny
, “
Enhancement and quenching of single-molecule fluorescence
,”
Phys. Rev. Lett.
96
,
113002
(
2006
).
13.
J. B.
Khurgin
,
G.
Sun
, and
R. A.
Soref
, “
Enhancement of luminescence efficiency using surface plasmon polaritons: Figures of merit
,”
J. Opt. Soc. Am. B
24
,
1968
(
2007
).
14.
H.
Mertens
,
A. F.
Koenderink
, and
A.
Polman
, “
Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model
,”
Phys. Rev. B
76
,
115123
(
2007
).
15.
H.
Mertens
and
A.
Polman
, “
Strong luminescence quantum-efficiency enhancement near prolate metal nanoparticles: Dipolar versus higher-order modes
,”
J. Appl. Phys.
105
,
044302
(
2009
).
16.
C. P.
Burrows
and
W. L.
Barnes
, “
Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays
,”
Opt. Express
18
,
3187
(
2010
).
17.
M.
Liu
,
T.-W.
Lee
,
S. K.
Gray
,
P.
Guyot-Sionnest
, and
M.
Pelton
, “
Excitation of dark plasmons in metal nanoparticles by a localized emitter
,”
Phys. Rev. Lett.
102
,
107401
(
2009
).
18.
S.
Zou
,
N.
Janel
, and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes
,”
J. Chem. Phys.
120
,
10871
(
2004
).
19.
S.
Zou
and
G. C.
Schatz
, “
Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields
,”
Chem. Phys. Lett.
403
,
62
(
2005
).
20.
G.
Vecchi
,
V.
Giannini
, and
J.
Gómez Rivas
, “
Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas
,”
Phys. Rev. Lett.
102
,
146807
(
2009
).
21.
V.
Giannini
,
G.
Vecchi
, and
J.
Gómez Rivas
, “
Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas
,”
Phys. Rev. Lett.
105
,
266801
(
2010
).
22.
J. M.
Steele
,
I.
Gagnidze
, and
S. M.
Wiele
, “
Efficient extraction of fluorescence emission utilizing multiple surface plasmon modes from gold wire gratings
,”
Plasmonics
5
,
319
(
2010
).
23.
G.
Pellegrini
,
G.
Mattei
, and
P.
Mazzoldi
, “
Nanoantenna arrays for large-area emission enhancement
,”
J. Chem. Phys. C
115
,
24662
(
2011
).
24.
T. V.
Teperik
and
A.
Degiron
, “
Superradiant optical emitters coupled to an array of nanosize metallic antennas
,”
Phys. Rev. Lett.
108
,
147401
(
2012
).
25.
A.
Abass
,
S. R. K.
Rodriguez
,
T.
Ako
,
T.
Aubert
,
M. A.
Verschuuren
,
D.
van Thourhout
,
J.
Beeckman
,
Z.
Hens
,
J.
Gómez Rivas
, and
B.
Maes
, “
Active liquid crystal tuning of plasmonic enhanced light emission from colloidal quantum dots
,”
Nano Lett.
14
,
5555
(
2014
).
26.
K. H.
Cho
,
J. Y.
Kim
,
D.-G.
Choi
,
K.-J.
Lee
,
J.-H.
Choi
, and
K. C.
Choi
, “
Surface plasmon-waveguide hybrid polymer light-emitting devices using hexagonal Ag dots
,”
Opt. Lett.
37
,
761
(
2012
).
27.
G.
Lozano
,
D. J.
Louwers
,
S. R. K.
Rodríguez
,
S.
Murai
,
O. T. A.
Jansen
,
M. A.
Verschuuren
, and
J.
Gómez Rivas
, “
Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources
,”
Light: Sci. Appl.
2
,
e66
(
2013
).
28.
G.
Lozano
,
G.
Grzela
,
M. A.
Verschuuren
,
M.
Ramezani
, and
J.
Gómez Rivas
, “
Tailor-made directional emission in nanoimprinted plasmonic-based light-emitting devices
,”
Nanoscale
6
,
9223
(
2014
).
29.
J.
Stehr
,
J.
Crewett
,
F.
Schindler
,
R.
Sperling
,
G.
von Plessen
,
U.
Lemmer
,
J. M.
Lupton
,
T. A.
Klar
,
J.
Feldmann
,
A. W.
Holleitner
,
M.
Forster
, and
U.
Scherf
, “
A low threshold polymer laser based on metallic nanoparticle gratings
,”
Adv. Mater.
15
,
1726
(
2003
).
30.
W.
Zhou
,
M.
Dridi
,
J. Y.
Suh
,
C. H.
Kim
,
D. T.
Co
,
M. R.
Wasielewski
,
G. C.
Schatz
, and
T. W.
Odom
, “
Lasing action in strongly coupled plasmonic nanocavity arrays
,”
Nat. Nanotechnol.
8
,
506
(
2013
).
31.
A. H.
Schokker
and
A. F.
Koenderink
, “
Lasing at the band edges of plasmonic lattices
,”
Phys. Rev. B
90
,
155452
(
2014
).
32.
S.
Pillai
,
K. R.
Catchpole
,
T.
Trupke
, and
M. A.
Green
, “
Surface plasmon enhanced silicon solar cells
,”
J. Appl. Phys.
101
,
093105
(
2007
).
33.
R.
Adatoa
,
A. A.
Yanika
,
J. J.
Amsdenc
,
D. L.
Kaplanc
,
F. G.
Omenettoc
,
M. K.
Honge
,
S.
Erramillib
, and
H.
Altuga
, “
Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
19227
(
2009
).
34.
V. G.
Kravets
,
F.
Schedin
,
A. V.
Kabashin
, and
A. N.
Grigorenko
, “
Sensitivity of collective plasmon modes of gold nanoresonators to local environment
,”
Opt. Lett.
35
,
956
(
2010
).
35.
P.
Offermans
,
M. C.
Schaafsma
,
S. R. K.
Rodriguez
,
Y.
Zhang
,
M.
Crego-Calama
,
S.
Brongersma
, and
J.
Gómez Rivas
, “
Universal scaling of the figure of merit of plasmonic sensors
,”
ACS Nano
5
,
5151
(
2011
).
36.
M. A.
Verschuuren
, “
Substrate conformal imprint lithography for nanophotonics
,” Ph.D. thesis,
Utrecht University
, Utrecht,
2010
.
37.
S. R. K.
Rodriguez
,
F.
Bernal Arango
,
T. P.
Steinbusch
,
M. A.
Verschuuren
,
A. F.
Koenderink
, and
J.
Gómez Rivas
, “
Breaking the symmetry of forward-backward light emission with localized and collective magnetoelectric resonances in arrays of pyramid-shaped aluminum nanoparticles
,”
Phys. Rev. Lett.
113
,
247401
(
2014
).
38.
A.
Christ
,
S. G.
Tikhodeev
,
N. A.
Gippius
,
J.
Kuhl
, and
H.
Giessen
, “
Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab
,”
Phys. Rev. Lett.
91
,
183901
(
2003
).
39.
S.
Murai
,
M. A.
Verschuuren
,
G.
Lozano
,
G.
Pirruccio
,
S. R. K.
Rodriguez
, and
J.
Gómez Rivas
, “
Hybrid plasmonic-photonic modes in diffractive arrays of nanoparticles coupled to light-emitting optical waveguides
,”
Opt. Express
21
,
4250
(
2013
).
40.
S. R. K.
Rodriguez
,
S.
Murai
,
M. A.
Verschuuren
, and
J.
Gómez Rivas
, “
Light-emitting waveguide-plasmon polaritons
,”
Phys. Rev. Lett.
109
,
166803
(
2012
).
41.
G.
Lozano
,
T.
Barten
,
G.
Grzela
, and
J.
Gómez Rivas
, “
Directional absorption by phased arrays of plasmonic nanoantennae probed with time-reversed Fourier microscopy
,”
New J. Phys.
16
,
013040
(
2014
).
42.
M.
Andreas Lieb
,
J. M.
Zavislan
, and
L.
Novotny
, “
Single-molecule orientations determined by direct emission pattern imaging
,”
J. Opt. Soc. Am. B
21
,
1210
1215
(
2004
).
43.
Comsol multiphysics®, RF Module.
44.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Elsevier
,
1998
).
45.
M.
Born
and
E.
Wolf
,
Principle of Optics
, 7th ed. (
Pergamon
,
1999
).
46.
E.
Hutter
and
J. H.
Fendler
, “
Exploitation of localized surface plasmon resonance
,”
Adv. Mater.
16
,
1685
1706
(
2004
).
You do not currently have access to this content.