The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

1.
R.
Ruoff
, “
Calling all chemists
,”
Nat. Nanotechnol.
3
,
10
11
(
2008
).
2.
K. P.
Loh
,
Q.
Bao
,
P. K.
Ang
, and
J.
Yang
, “
The chemistry of graphene
,”
J. Mater. Chem.
20
,
2277
2289
(
2010
).
3.
W. C.
Sun
,
J. E.
Andrade
, and
J. W.
Rudnicki
, “
Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability
,”
Int. J. Numer. Methods Eng.
88
,
1260
1279
(
2011
).
4.
S.
Santanu
,
B.
Elena
, and
R. C.
Haddon
, “
Covalent chemistry in graphene electronics
,”
Mater. Today
15
(
6
),
276
285
(
2012
).
5.
A. H. C.
Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
, “
The electronic properties of graphene
,”
Rev. Mod. Phys.
81
,
109
162
(
2009
).
6.
E. V.
Castro
,
K. S.
Novoselov
,
S. V.
Morozov
,
N. M. R.
Peres
,
J. M. B.
Lopes dos Santos
,
J.
Nilsson
,
F.
Guinea
,
A. K.
Geim
, and
A. H. C.
Neto
, “
Electronic properties of a biased graphene bilayer
,”
J. Phys.: Condens. Matter
22
,
175503
(
2010
).
7.
S.
Stankovich
,
D. A.
Dikin
,
G. H. B.
Dommett
,
K. M.
Kohlhaas
,
E. J.
Zimney
,
E. A.
Stach
,
R. D.
Piner
,
S. T.
Nguyen
, and
R. S.
Ruoff
, “
Graphene-based composite materials
,”
Nature
442
,
282
286
(
2006
).
8.
J. R.
Potts
,
D. R.
Dreyer
,
C. W.
Bielawski
, and
R. S.
Ruoff
, “
Graphene-based polymer nanocomposites
,”
Polymer
52
,
5
25
(
2011
).
9.
S.
Wen
,
Y.
Yuqi
,
S.
Jiangnan
, and
C.
Hua
, “
A graphene-based composite material noncovalently functionalized with a chemiluminescence reagent: Synthesis and intrinsic chemiluminescence activity
,”
Chem. Commun.
48
,
2894
2896
(
2012
).
10.
R. B.
Pattabhi
,
B.
Rammohan
,
K. S.
Vijay
,
B. D.
Satish
, and
R.
Raghunathan
, “
Aero-elastic analysis of stiffened composite wing structure
,”
J. Vibration Engineering & Technologies
8
(
3
),
255
264
(
2009
); available at http://www.tvi-in.com/Journals/journaldetail.aspx?Id=2014042911533693270315b1862bdf2.
11.
P. R.
Budarapu
,
S. Y. B.
Sudhir
,
J.
Brahmanandam
, and
D. R.
Mahapatra
, “
Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium
,”
Front. Struct. Civil Eng.
8
(
2
),
151
159
(
2014
).
12.
Y.
Zhang
,
J.
Zhao
,
N.
Wie
,
J. W.
Jiang
, and
T.
Rabczuk
, “
Effects of the dispersion of polymer wrapped two neighbouring single walled carbon nanotubes (SWNTS) on nanoengineering load transfer
,”
Composites, Part B
45
(
1
),
1714
1721
(
2013
).
13.
K.
Kim
,
V. I.
Artyukhov
,
W.
Regan
,
Y.
Liu
,
M. F.
Crommie
,
B. I.
Yakobson
, and
A.
Zettl
, “
Ripping graphene: Preferred directions
,”
Nano Lett.
12
,
293
297
(
2012
).
14.
H.
Zhao
,
K.
Min
, and
N. R.
Aluru
, “
Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension
,”
Nano Lett.
9
(
8
),
3012
3015
(
2009
).
15.
L.
Changgu
,
W.
Xiaoding
,
W.
Kysar Jeffrey
, and
H.
James
, “
Measurement of the elastic properties and intrinsic strength of monolayer graphene
,”
Science
321
(
5887
),
385
388
(
2008
).
16.
F.
Liu
,
M.
Pingbing
, and
L.
Ju
, “
Ab initio calculation of ideal strength and phonon instability of graphene under tension
,”
Phys. Rev. B
76
,
064120
(
2007
).
17.
J.
Zhao
,
Z.
Fan
,
J. W.
Jiang
, and
T.
Rabczuk
, “
Mechanical properties of three types of carbon allotropes
,”
Nanotechnology
24
,
095702
(
2013
).
18.
R.
Ansari
,
S.
Ajori
, and
B.
Motevalli
, “
Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation
,”
Superlattices Microstruct.
51
,
274
289
(
2012
).
19.
M.
Wang
,
C.
Yan
,
L.
Ma
,
N.
Hu
, and
M.
Chen
, “
Effect of defects on fracture strength of graphene sheets
,”
Comput. Mater. Sci.
54
,
236
239
(
2012
).
20.
R.
Khare
,
S. L.
Mielke
,
J. T.
Paci
,
S.
Zhang
,
R.
Ballarini
,
G. C.
Schatz
, and
T.
Belytschko
, “
Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets
,”
Phys. Rev. B
75
,
075412
(
2007
).
21.
A.
Omeltchenko
,
J.
Yu
,
R. K.
Kalia
, and
P.
Vashishta
, “
Crack front propagation and fracture in a graphite sheet: A molecular-dynamics study on parallel computers
,”
Phys. Rev. Lett.
78
(
11
),
2148
2151
(
1997
).
22.
D. W.
Brenner
, “
Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films
,”
Phys. Rev. B
42
,
9458
(
1990
).
23.
Q.
Lu
,
W.
Gao
, and
R.
Huang
, “
Atomistic simulation and continuum modeling of graphene nanoribbons under uniaxial tension
,”
Modell. Simul. Mater. Sci. Eng.
19
,
54006
(
2011
).
24.
S. S.
Terdalkar
,
S.
Huang
,
H.
Yuan
,
J. J.
Rencis
,
T.
Zhu
, and
S.
Zhang
, “
Nanoscale fracture in graphene
,”
Chem. Phys. Lett.
494
,
218
222
(
2010
).
25.
M.-Q.
Le
and
R. C.
Batra
, “
Single-edge crack growth in graphene sheets under tension
,”
Comput. Mater. Sci.
69
,
381
388
(
2013
).
26.
M.-Q.
Le
and
R. C.
Batra
, “
Crack propagation in pre-strained single layer graphene sheets
,”
Comput. Mater. Sci.
84
,
238
243
(
2014
).
27.
A.
Lohrasebi
,
M.
Amini
, and
M.
Neek-Amal
, “
The effects of temperature and vacancies on dynamics of crack in graphene sheet
,”
AIP Adv.
4
(
5
),
057113
(
2014
).
28.
M. A. N.
Dewapriya
,
R. K. N. D.
Rajapakse
, and
A. S.
Phani
, “
Atomistic and continuum modelling of temperature-dependent fracture of graphene
,”
Int. J. Fracture
187
,
199
212
(
2014
).
29.
M. A. N.
Dewapriya
and
R. K. N. D.
Rajapakse
, “
Molecular dynamics simulations and continuum modeling of temperature and strain rate dependent fracture strength of graphene with vacancy defects
,”
J. Appl. Mech.
81
(
8
),
081010
(
2014
).
30.
C.
O'Sullivan
and
J. D.
Bray
, “
Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme
,”
Eng. Comput.
21
,
278
303
(
2004
).
31.
I. G.
Tejada
and
R.
Jimenez
, “
Impact of the timestep in some molecular dynamics simulations on compression of granular systems
,”
Eur. Phys. J. E
37
,
15
(
2014
).
32.
Z.
Chao
,
W.
Cuixia
,
L.
Tom
,
H.
Pengfei
, and
R.
Timon
, “
A dynamic XFEM formulation for crack identification
,”
Int. J. Mech. Mater. Des.
(published online).
33.
Z.
Zhang
,
X.
Wang
, and
J. D.
Lee
, “
An atomistic methodology of energy release rate for graphene at nanoscale
,”
J. Appl. Phys.
115
(
11
),
114314
(
2014
).
34.
J.
Tersoff
, “
Modeling solid-state chemistry: Interatomic potentials for multicomponent systems
,”
Phys. Rev. B
39
(
8
),
5566
5568
(
1989
).
35.
K. Y.
Volokh
, “
On the strength of graphene
,”
J. Appl. Mech.
79
(
6
),
064501
(
2012
).
36.
H.
Zhao
and
N. R.
Aluru
, “
Temperature and strain-rate dependent fracture strength of graphene
,”
J. Appl. Phys.
108
,
064321
(
2010
).
37.
A.
Mattoni
,
L.
Colombo
, and
F.
Cleri
, “
Atomic scale origin of crack resistance in brittle fracture
,”
Phys. Rev. Lett.
95
,
115501
(
2005
).
38.
A. K.
Subramaniyan
and
C. T.
Sun
, “
Continuum interpretation of virial stress in molecular simulations
,”
Int. J. Solids Struct.
45
,
4340
4346
(
2008
).
39.
C.
Swope William
,
C.
Anderson Hans
,
H.
Berens Peter
, and
R.
Wilson Kent
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
(
1982
).
40.
H. S.
Park
,
E. G.
Karpov
,
W. K.
Liu
, and
P. A.
Klein
, “
Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands
,”
Phys. Rev. B
84
,
035433
(
2011
).
41.
G.
Yuanwen
and
H.
Peng
, “
Mechanical properties of monolayer graphene under tensile and compressive loading
,”
Physica E
41
,
1561
1566
(
2009
).
42.
Z.
Ying-Yan
,
P.
Qing-Xiang
,
M.
Yiu-Wing
, and
G.
Yuan-Tong
, “
Temperature and strain-rate dependent fracture strength of graphynes
,”
J. Phys. D: Appl. Phys.
47
(
42
),
425301
(
2014
).
43.
L. K.
Cynthia
,
S. J.
Plimpton
, and
J. C.
Hamilton
, “
Dislocation nucleation and defect structure during surface indentation
,”
Phys. Rev. B
58
,
11085
(
1998
).
44.
P. R.
Budarapu
,
R.
Gracie
,
S.-W.
Yang
,
X.
Zhuang
, and
T.
Rabczuk
, “
Efficient coarse graining in multiscale modeling of fracture
,”
Theor. Appl. Fract. Mech.
69
,
126
143
(
2014
).
45.
S. W.
Yang
,
P. R.
Budarapu
,
D. R.
Mahapatra
,
S. P. A.
Bordas
,
G.
Zi
, and
T.
Rabczuk
, “
A meshless adaptive multiscale method for fracture
,”
Comput. Mater. Sci.
96B
,
382
395
(
2015
).
46.
P. R.
Budarapu
,
R.
Gracie
,
B.
Stéphane
, and
T.
Rabczuk
, “
An adaptive multiscale method for quasi-static crack growth
,”
Comput. Mech.
53
(
6
),
1129
1148
(
2014
).
47.
Y.
Magnin
,
G. D.
Förster
,
F.
Rabilloud
,
F.
Calvo
,
A.
Zappelli
, and
C.
Bichara
, “
Thermal expansion of free-standing graphene: Benchmarking semi-empirical potentials
,”
J. Phys.: Condens. Matter
26
,
185401
(
2014
).
48.
Z.
Teng
,
L.
Xiaoyan
,
K.
Sara
, and
G.
Huajian
, “
Flaw insensitive fracture in nanocrystalline graphene
,”
Nano Lett.
12
,
4605
4610
(
2012
).
49.
Z.
Peng
,
M.
Lulu
,
F.
Feifei
,
Z.
Zhi
,
P.
Cheng
,
L. E.
Phillip
,
L.
Zheng
,
G.
Yongji
,
Z.
Jiangnan
,
Z.
Xingxiang
,
M.
Ajayan Pulickel
,
Z.
Ting
, and
L.
Jun
, “
Fracture toughness of graphene
,”
Nat. Commun.
5
,
3782
(
2014
).
50.
B.
Zhang
,
Y.
Gang
, and
X.
Heming
, “
Instability of supersonic crack in graphene
,”
Physica B
434
,
145
148
(
2014
).
You do not currently have access to this content.