In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam–matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical simulations are presented in this paper.

1.
R.
Schmidt
,
R.
Assmann
,
E.
Carlier
,
B.
Dehning
,
R.
Denz
,
B.
Goddard
,
E. B.
Holzer
,
V.
Kain
,
B.
Puccio
,
B.
Todd
 et al,
New J. Phys.
8
,
290
(
2006
).
3.
N. A.
Tahir
,
B.
Goddard
,
V.
Kain
,
R.
Schmidt
,
A.
Shutov
,
I. V.
Lomonosov
,
A. R.
Piriz
,
M.
Temporal
,
D. H. H.
Hoffmann
, and
V. E.
Fortov
,
J. Appl. Phys.
97
,
083532
(
2005
).
4.
N. A.
Tahir
,
R.
Schmidt
,
A.
Shutov
,
I. V.
Lomonosov
,
A. R.
Piriz
,
D. H. H.
Hoffmann
,
C.
Deutsch
, and
V. E.
Fortov
,
Phys. Rev. E
79
,
046410
(
2009
).
5.
N. A.
Tahir
,
J.
Blanco Sancho
,
A.
Shutov
,
R.
Schmidt
, and
A. R.
Piriz
,
Phys. Rev. Spec. Top.--Accel. Beams
15
,
051003
(
2012
).
6.
R.
Schmidt
,
J.
Sancho Blanco
,
F.
Burkart
,
D.
Grenier
,
D.
Wollmann
, and
N. A.
Tahir
, “
Results on an experiment on hydrodynamic tunneling at the SPS HiRadMat high intensity proton facility
,” in
Proceedings of the IPAC13, Shanghai, China, 2013
.
7.
J.
Blanco Sancho
,
F.
Burkart
,
N.
Charitonidis
,
I.
Efthymiopoulos
,
D.
Grenier
,
C.
Maglioni
,
R.
Schmidt
,
C.
Theis
,
D.
Wollmann
, and
N. A.
Tahir
, in
Proceedings of the HB 2012, Beijing, China, 2012
.
8.
R.
Schmidt
,
J.
Blanco Sancho
,
F.
Burkart
,
D.
Grenier
,
D.
Wollmann
,
N. A.
Tahir
,
A.
Shutov
, and
A. R.
Piriz
,
Phys. Plasmas
21
,
080701
(
2014
).
9.
N. A.
Tahir
,
F.
Burkart
,
A.
Shutov
,
R.
Schmidt
,
D.
Wollmann
, and
A. R.
Piriz
,
Phys. Rev. E
90
,
063112
(
2014
).
10.
N. A.
Tahir
,
A.
Kozyreva
,
P.
Spiller
,
D. H. H.
Hoffmann
, and
A.
Shutov
,
Phys. Rev. E
63
,
036407
(
2001
).
11.
N. A.
Tahir
,
C.
Deutsch
,
V. E.
Fortov
,
V.
Gryaznov
,
D. H. H.
Hoffmann
,
M.
Kulish
,
I. V.
Lomonosov
,
V.
Mintsev
,
P.
Ni
,
D.
Nikolaev
,
A. R.
Piriz
,
N.
Shilkin
,
P.
Spiller
,
A.
Shutov
,
M.
Temporal
,
V.
Ternovoi
,
S.
Udrea
, and
D.
Varentsov
,
Phys. Rev. Lett.
95
,
035001
(
2005
).
12.
N. A.
Tahir
,
P.
Spiller
,
A.
Shutov
,
I. V.
Lomonosov
,
V.
Gryaznov
,
A. R.
Piriz
,
G.
Wouchuk
,
C.
Deutsch
,
V. E.
Fortov
,
D. H. H.
Hoffmann
, and
R.
Schmidt
,
Nucl. Instum. Methods A
577
,
238
(
2007
).
13.
N. A.
Tahir
,
Th.
Stöhlker
,
A.
Shutov
,
I. V.
Lomonosov
,
V. E.
Fortov
,
M.
French
,
N.
Nettelmann
,
R.
Redmer
,
A. R.
Piriz
,
C.
Deutsch
 et al,
New J. Phys.
12
,
073022
(
2010
).
14.
N. A.
Tahir
,
A.
Shutov
,
A. P.
Zharkov
,
A. R.
Piriz
, and
Th.
Stoehlker
,
Phys. Plasmas
18
,
032704
(
2011
).
15.
H.
Geissel
,
H.
Weick
,
M.
Winkler
,
G.
Münzenberg
,
V.
Chichkine
,
M.
Yavor
,
T.
Aumann
,
K. A.
Behr
,
M.
Bohmer
,
A.
Brunle
,
K.
Burhard
,
J.
Benlliure
,
D.
Gill-Cortina
,
L.
Chulkov
,
A.
Dael
,
J. E.
Ducret
,
H.
Emling
,
B.
Franczak
,
J.
Friese
,
B.
Castineau
,
R.
Gernhauser
,
M.
Hellstrom
,
B.
Johnson
,
J.
Kojouharova
,
R.
Kullesa
,
B.
Kindler
,
N.
Kurz
,
B.
Lommel
,
W.
Mittig
,
G.
Moritz
,
C.
Mühle
,
J. A.
Nolen
,
G.
Nyman
,
P.
Roussel-Chomaz
,
C.
Scheidenberger
,
K. H.
Schmidt
,
G.
Schrieder
,
B. M.
Sherrill
,
H.
Simon
,
K.
Sümmerer
,
N. A.
Tahir
,
V.
Vysotsky
,
H.
Wolnik
, and
A. F.
Zeller
,
Nucl. Instrum. Methods Phys. Res., Sect. B
204
,
71
(
2003
).
16.
N. A.
Tahir
,
H.
Weick
,
H.
Iwase
,
H.
Geissel
,
D. H. H.
Hoffmann
,
B.
Kindler
,
B.
Lommel
,
T.
Radon
,
G.
Münzenberg
,
A.
Shutov
,
K.
Sümmerer
, and
M.
Winkler
,
J. Phys. D
38
,
1828
(
2005
).
17.
N. A.
Tahir
,
V.
Kim
,
A.
Matveichev
,
A. V.
Ostrik
,
A. V.
Shutov
,
I. V.
Lomonosov
,
A. R.
Piriz
,
J. J.
Lopez Cela
, and
D. H. H.
Hoffmann
,
Laser Part. Beams
26
,
273
(
2008
).
18.
N. A.
Tahir
,
H.
Weick
,
A.
Shutov
,
V.
Kim
,
A.
Matveichev
,
A.
Ostrik
,
V.
Sultanov
,
I. V.
Lomonosov
,
A. R.
Piriz
,
J. J.
Lopez Cela
, and
D. H. H.
Hoffmann
,
Laser Part. Beams
26
,
411
(
2008
).
19.
N. A.
Tahir
,
A.
Matveichev
,
V.
Kim
,
A.
Ostrik
,
A.
Shutov
,
V.
Sultanov
,
I. V.
Lomonosov
,
A. R.
Piriz
, and
D. H. H.
Hoffmann
,
Laser Part. Beams
27
,
9
(
2009
).
20.
A.
Fasso
,
A.
Ferrari
,
J.
Ranft
, and
P. R.
Sala
,
CERN Report No. CERN-2005-10
(unpublished).
21.
A.
Fasso
,
A.
Ferrari
,
S.
Roesler
,
R. P.
Sala
,
G.
Battistoni
,
F.
Cerutti
,
E.
Gadioli
,
M. V.
Garzelli
,
F.
Ballarini
,
A.
Ottolenghi
,
A.
Empl
, and
J.
Ranft
, in
Conference on Computing in High Energy and Nuclear Physics, La Jolla, USA, 2003
.
22.
V. E.
Fortov
,
B.
Goel
,
C. D.
Munz
,
A. L.
Ni
,
A.
Shutov
, and
O. V.
Vorobiev
,
Nucl. Sci. Eng.
123
,
169
(
1996
).
23.
I. V.
Lomonosov
,
Laser Part. Beams
25
,
567
(
2007
).
24.
I. V.
Lomonosov
and
N. A.
Tahir
,
Appl. Phys. Lett.
92
,
101905
(
2008
).
You do not currently have access to this content.