Electrochemical Strain Microscopy (ESM) can provide useful information on ionic diffusion in solids at the local scale. In this work, a finite element model of ESM measurements was developed and applied to commercial lithium manganese (III,IV) oxide (LiMn2O4) particles. ESM time spectroscopy was used, where a direct current (DC) voltage pulse locally disturbs the spatial distribution of mobile ions. After the pulse is off, the ions return to equilibrium at a rate which depends on the Li diffusivity in the material. At each stage, Li diffusivity is monitored by measuring the ESM response to a small alternative current (AC) voltage simultaneously applied to the tip. The model separates two different mechanisms, one linked to the response to DC bias and another one related to the AC excitation. It is argued that the second one is not diffusion-driven but is rather a contribution of the sum of several mechanisms with at least one depending on the lithium ion concentration explaining the relaxation process. With proper fitting of this decay, diffusion coefficients of lithium hosts could be extracted. Additionally, the effect of phase transition in LiMn2O4 is taken into account, explaining some experimental observations.

1.
M.
Park
,
X.
Zhang
,
M.
Chung
,
G. B.
Less
, and
A. M.
Sastry
,
J. Power Sources
195
,
7904
(
2010
).
2.
J.
Vetter
,
P.
Novak
,
M.
Wagner
,
C.
Veit
,
K.-C.
Müller
,
J.
Besenhard
,
M.
Winter
,
M.
Wohlfahrt-Mehrens
,
C.
Vogler
, and
A.
Hammouche
,
J. Power Sources
147
,
269
(
2005
).
3.
A. N.
Morozovska
,
E. A.
Eliseev
,
N.
Balke
, and
S. V.
Kalinin
,
J. Appl. Phys.
108
,
053712
(
2010
).
4.
S. V.
Kalinin
and
A. N.
Morozovska
,
J. Electroceram.
32
,
51
(
2014
).
5.
S.
Guo
,
S.
Jesse
,
S.
Kalnaus
,
N.
Balke
,
C.
Daniel
, and
S. V.
Kalinin
,
J. Electrochem. Soc.
158
,
A982
(
2011
).
6.
R. F.
Mamin
,
I. K.
Bdikin
, and
A. L.
Kholkin
,
Appl. Phys. Lett.
94
,
222901
(
2009
).
7.
K.
Hoang
,
J. Mater. Chem. A
2
,
18271
(
2014
).
8.
J.
Guan
and
M.
Liu
,
Solid State Ionics
110
,
21
(
1998
).
9.
S.
Jesse
,
N.
Balke
,
E.
Eliseev
,
A.
Tselev
,
N. J.
Dudney
,
A. N.
Morozovska
, and
S. V.
Kalinin
,
ACS Nano
5
,
9682
(
2011
).
10.
A. N.
Morozovska
,
E. A.
Eliseev
, and
S. V.
Kalinin
,
J. Appl. Phys.
111
,
014114
(
2012
).
11.
A.
Tselev
,
A. N.
Morozovska
,
A.
Udod
,
E. A.
Eliseev
, and
S. V.
Kalinin
,
Nanotechnology
25
,
445701
(
2014
).
12.
R. A.
Huggins
,
Advanced Batteries
(
Springer Verlag
,
2009
), Chap. 17, pp.
414
431
.
13.
N.
Balke
,
S.
Jesse
,
Y.
Kim
,
L.
Adamczyk
,
A.
Tselev
,
I.
Ivanov
,
N.
Dudney
, and
S.
Kalinin
,
Nano Lett.
10
,
3420
(
2010
).
14.
S. Y.
Luchkin
,
K.
Romanyuk
,
M.
Ivanov
, and
A. L.
Kholkin
, “Li transport in fresh and aged LiMn2O4 cathodes via electrochemical strain microscopy,”
J. Appl. Phys.
(to be published).
15.
C.
Julien
,
A.
Mauger
,
K.
Zaghib
, and
H.
Groult
,
Inorganics
2
,
132
(
2014
).
16.
H.
Berg
and
J.
Thomas
,
Solid State Ionics
126
,
227
(
1999
).
17.
C.
Julien
and
M.
Massot
,
Mater. Sci. Eng., B
100
,
69
(
2003
).
18.
A.
Van Der Ven
,
J.
Bhattacharya
, and
A.
Belak
,
Acc. Chem. Res.
46
,
1216
(
2013
).
19.
E.
Bohn
,
T.
Eckl
,
M.
Kamlah
, and
R.
McMeeking
,
J. Electrochem. Soc.
160
,
A1638
(
2013
).
20.
D.-W.
Chung
,
N.
Balke
,
S. V.
Kalinin
, and
R. E.
García
,
J. Electrochem. Soc.
158
,
A1083
(
2011
).
21.
H.-Y.
Amanieu
,
D.
Rosato
,
M.
Sebastiani
,
F.
Massimi
, and
D. C.
Lupascu
,
Mater. Sci. Eng., A
593
,
92
(
2014
).
22.
A.
Kumar
,
F.
Ciucci
,
A.
Morozovska
,
S.
Kalinin
, and
S.
Jesse
,
Nat. Chem.
3
,
707
(
2011
).
23.
See supplemental material organized in four appendices at http://dx.doi.org/10.1063/1.4927747. Appendix A relates to the description of the Gibbs free energy. Appendix B relates to the description of Deff and g. Appendix C relates to butterfly-like loops. Appendix D is additional figures and animations from experimental measurements and from the model.
24.
H.
Dal
and
C.
Miehe
,
Comput. Mech.
55
,
303
(
2015
).
25.
A. R.
Allnatt
and
A. B.
Lidiard
,
Atomic Transport in Solids
(
Cambridge University Press
,
1993
).
26.
E.
Iguchi
,
N.
Nakamura
, and
A.
Aoki
,
Philos. Mag. B
78
,
65
(
1998
).
27.
E.
Iguchi
,
Y.
Tokuda
,
H.
Nakatsugawa
, and
F.
Munakata
,
J. Appl. Phys.
91
,
2149
(
2002
).
28.
K.
Tateishi
,
D.
du Boulay
, and
N.
Ishizawa
,
Appl. Phys. Lett.
84
,
529
(
2004
).
29.
J.
Marzec
,
S.
Świerczek
,
J.
Przewoźnik
,
J.
Molenda
,
D.
Simon
,
E.
Kelder
, and
J.
Schoonman
,
Solid State Ionics
146
,
225
(
2002
).
30.
E.
Bohn
,“
Partikel-Modell für Lithium-Diffusion und mechanische Spannungen einer Interkalationselektrode
,” Ph.D. thesis (
Karlsruher Institut für Technologie
,
2011
).
31.
R. E.
García
,
Y.-M.
Chiang
,
W. C.
Carter
,
P.
Limthongkul
, and
C. M.
Bishop
,
J. Electrochem. Soc.
152
,
A255
(
2005
).
32.
B. M.
Bolotovskiĭ
and
A. V.
Serov
,
Phys. Usp.
37
,
515
(
1994
).
33.
S.
Choudhury
,
J. X.
Zhang
,
Y. L.
Li
,
L. Q.
Chen
,
Q. X.
Jia
, and
S. V.
Kalinin
,
Appl. Phys. Lett.
93
,
162901
(
2008
).
34.
H.-Y.
Amanieu
,
M.
Aramfard
,
D.
Rosato
,
L.
Batista
,
U.
Rabe
, and
D. C.
Lupascu
,
Acta Mater.
89
,
153
(
2015
).
35.
Q. N.
Chen
,
Y.
Ou
,
F.
Ma
, and
J.
Li
,
Appl. Phys. Lett.
104
,
242907
(
2014
).
36.
37.
X.-C.
Tang
,
X.-W.
Song
,
P.-Z.
Shen
, and
D.-Z.
Jia
,
Electrochim. Acta
50
,
5581
(
2005
).
38.
A. N.
Morozovska
,
E. A.
Eliseev
,
S. L.
Bravina
,
F.
Ciucci
,
G. S.
Svechnikov
,
L.-Q.
Chen
, and
S. V.
Kalinin
,
J. Appl. Phys.
111
,
014107
(
2012
).
39.
T. D.
Nguyen
,
S.
Mao
,
Y.-W.
Yeh
,
P. K.
Purohit
, and
M. C.
McAlpine
,
Adv. Mater.
25
,
946
(
2013
).

Supplementary Material

You do not currently have access to this content.