The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (Rd) is dependent upon the substrate type. At the initial stage of Si film formation, Rd on glass substrates increased with elapsed time and reached to a constant value. In contrast, Rd on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (Tsub) and hydrogen concentration (CH2) in the process atmosphere. For any given deposition time, it was found that an optimum CH2 exists for a given Tsub to realize the selective deposition of a Si film, and the optimum Tsub value tends to increase with decreasing CH2. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH2, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.

1.
J. M.
Hartmann
,
V.
Benevent
,
J. P.
Barnesa
,
M.
Veillerot
,
D.
Lafond
,
J. F.
Damlencourt
,
S.
Morvan
,
B.
Previtali
,
F.
Andrieu
,
N.
Loubet
, and
D.
Dutartre
,
Solid-State Electron.
83
,
10
(
2013
).
2.
D.
Joachim
and
L.
Lin
,
J. Microelectromech. Syst.
12
,
193
(
2003
).
3.
M. R.
Payo
,
N.
Posthuma
,
A. U.
de Castro
,
M.
Debucquoy
, and
J.
Poortmans
,
Prog. Photovolt: Res. Appl.
22
,
711
(
2014
).
4.
Y.
Park
and
S.
Rhee
,
Appl. Phys. Lett.
68
,
2219
(
1996
).
5.
J.
Lee
,
M.
Kim
,
D.
Kim
,
Y.
Kim
,
J.
Moon
, and
S.
Joo
,
Appl. Phys. Lett.
94
,
122105
(
2009
).
6.
C. G.
Takoudis
and
M. M.
Kastelic
,
Chem. Eng. Sci.
44
,
2049
(
1989
).
7.
R.
Frost
,
K.
Mordaunt
,
S.-K.
Yang
,
G. W.
Neudeck
, and
C. G.
Takoudis
,
Chem. Eng. Sci.
47
,
2969
(
1992
).
8.
C.
Ho
,
J.
He
,
Y.
Chang
, and
C.
Lien
,
Thin solid films
517
,
6850
(
2009
).
9.
B. J.
MacDonald
,
E.
Paton
,
E.
Adem
, and
B.
En
,
Appl. Surf. Sci.
231–232
,
776
(
2004
).
10.
C.
Pribat
,
G.
Servanton
,
L.
Depoyan
, and
D.
Dutartre
,
Solid-State Electron.
53
,
865
(
2009
).
11.
H.
Hirayama
,
T.
Tatsumi
,
A.
Ogura
, and
N.
Aizaki
,
Appl. Phys. Lett.
51
,
2213
(
1987
).
12.
T.-R.
Yew
and
R.
Reif
,
J. Appl. Phys.
65
,
2500
(
1989
).
13.
W.
Westlake
and
M.
Heintze
,
J. Appl. Phys.
77
,
879
(
1995
).
14.
K.
Baert
,
P.
Deschepper
,
J.
Poortmans
,
J.
Nijs
, and
R.
Mertens
,
Appl. Phys. Lett.
60
,
442
(
1992
).
15.
H.
Ohmi
,
H.
Kakiuchi
,
Y.
Hamaoka
, and
K.
Yasutake
,
J. Appl. Phys.
102
,
023302
(
2007
).
16.
H.
Ohmi
,
K.
Kishimoto
,
H.
Kakiuchi
, and
K.
Yasutake
,
J. Phys. D: Appl. Phys.
41
,
195208
(
2008
).
17.
D.
Kamada
,
K.
Kishimoto
,
H.
Kakiuchi
,
K.
Yasutake
, and
H.
Ohmi
,
Surf. Interface Anal.
40
,
979
(
2008
).
18.
S.
Veprek
and
V.
Marecek
,
Solid-State Electron.
11
,
683
(
1968
).
19.
T.
Ohmi
,
J. Electrochem. Soc.
143
,
2957
(
1996
).
20.
J. L.
Regolini
,
D.
Bensahel
, and
J.
Mercier
,
Materi. Sci. Eng. B
4
,
407
(
1989
).
21.
M.
Kato
,
T.
Sato
,
J.
Murota
, and
N.
Mikoshiba
,
J. Cryst. Growth
99
,
240
(
1990
).
22.
W. A. P.
Claassen
and
J.
Bloem
,
J. Electrochem. Soc.
127
,
194
(
1980
).
23.
W. A. P.
Claassen
and
J.
Bloem
,
J. Electrochem. Soc.
128
,
1353
(
1981
).
24.
G. N.
Parsons
,
J. J.
Boland
, and
J. C.
Tsang
,
Jpn. J. Appl. Phys., Part 1
31
,
1943
(
1992
).
25.
S.
Shimokawa
,
A.
Namiki
,
T.
Ando
,
Y.
Sato
, and
J.
Lee
,
J. Chem. Phys.
112
,
356
(
2000
).
26.
T.
Bakos
,
M. S.
Valipa
, and
D.
Maroudas
,
J. Chem. Phys.
122
,
054703
(
2005
).
27.
S.
Cereda
,
F.
Montalenti
, and
L.
Miglio
,
Surf. Sci.
601
,
3970
(
2007
).
28.
T. W.
Schroeder
,
A. M.
Lam
,
P. F.
Ma
, and
J. R.
Engstroma
,
J. Vac. Sci. Technol. A
22
,
578
(
2004
).
29.
C.
Basa
and
E. A.
Irene
,
J. Vac. Sci. Technol. A
17
,
817
(
1999
).
30.
N.
Afshar-Hanaii
,
J. M.
Bonar
,
A. G. R.
Evans
,
G. J.
Parker
,
C. M. K.
Starbuck
, and
H. A.
Kemhadjian
,
Microelectron. Eng.
18
,
237
(
1992
).
31.
S.
Veprek
,
C.
Wang
, and
M. G. J.
Veprek-Heijman
,
J. Vac. Sci. Technol. A
26
,
313
(
2008
).
32.
T.
Yamada
,
H.
Ohmi
,
K.
Okamoto
,
H.
Kakiuchi
, and
K.
Yasutake
,
Jpn J. Appl. Phys., Part 1
51
,
10NA09
(
2012
).
33.
B.
Lewis
and
D. S.
Campbell
,
J. Vac. Sci. Technol.
4
,
209
(
1967
).
34.
35.
S.
Horch
,
H. T.
Lorensen
,
S.
Helveg
,
E.
Lagsgaard
,
I.
Stensgaard
,
K. W.
Jacobsen
,
J. K.
Norskov
, and
F.
Besenbacher
,
Nature
398
,
134
(
1999
).
36.
A.
Sakai
and
T.
Tatsumi
,
Appl. Phys. Lett.
64
,
52
(
1994
).
37.
Y.
Kobayashi
,
K.
Sumitomo
,
K.
Shiraishi
,
T.
Urisu
, and
T.
Ogino
,
Surf. Sci.
436
,
9
(
1999
).
38.
T.
Fujikawa
,
T.
Yoshikawa
,
T.
Ohnishi
, and
T.
Sato
,
Jpn. J. Appl. Phys., Part 1
40
,
2191
(
2001
).
39.
N. H.
Nickel
,
G. B.
Anderson
, and
J.
Walker
,
Solid State Commun.
99
,
427
(
1996
).
40.
A. W. R.
Leitch
,
J.
Weber
, and
V.
Alex
,
Mater. Sci. Eng. B
58
,
6
(
1999
).
41.
N.
Fukata
,
S.
Sasaki
,
K.
Murakami
,
K.
Ishioka
,
K. G.
Nakamura
,
M.
Kitajima
,
S.
Fujimura
,
J.
Kikuchi
, and
H.
Haneda
,
Phys. Rev. B
56
,
6642
(
1997
).
42.
R.
Job
,
A. G.
Ulyashin
, and
W. R.
Fahrner
,
Mater. Sci. Semicond. Process.
4
,
257
260
(
2001
).
43.
P. A.
Temple
and
C. E.
Hathaway
,
Phys. Rev. B
7
,
3685
(
1973
).
44.
E. V.
Lavrov
and
J.
Weber
,
Phys. Rev. Lett.
87
,
185502
(
2001
).
45.
A. W. R.
Leitch
,
V.
Alex
, and
J.
Weber
,
Phys. Rev. Lett.
81
,
421
(
1998
).
46.
K.-H.
Hwang
,
E.
Yoon
,
K.-W.
Whang
, and
J. Y.
Lee
,
J. Electrochem. Soc.
144
,
335
(
1997
).
47.
J.
Abrefah
and
D. R.
Olander
,
Surf. Sci.
209
,
291
(
1989
).
48.
P.
Kae-Nune
,
J.
Perrin
,
J.
Jolly
, and
J.
Guillon
,
Surf. Sci.
360
,
L495
(
1996
).
49.
E.
Bustarret
,
M. A.
Hachicha
, and
M.
Brunel
,
Appl. Phys. Lett.
52
,
1675
(
1988
).
50.
C.
Smit
,
R. A. C. M. M.
van Swaaij
,
H.
Donker
,
A. M. H. N.
Petit
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
J. Appl. Phys.
94
,
3582
(
2003
).
51.
S.
Vep1ek
,
F. A.
Sarot
, and
Z.
Iqbal
,
Phys. Rev. B
36
,
3344
(
1987
).
52.
E. V.
Johnson
,
L.
Kroely
, and
P.
Roca i Cabarrocas
,
Sol. Energy Mater. Sol. Cells
93
,
1904
(
2009
).
53.
A. H. M.
Smets
,
T.
Matsui
, and
M.
Kondo
,
J. Appl. Phys.
104
,
034508
(
2008
).
54.
Y.
Abe
,
A.
Fukushima
,
K.
Takeda
,
H.
Kondo
,
K.
Ishikawa
,
M.
Sekine
, and
M.
Hori
,
J. Appl. Phys.
113
,
013303
(
2013
).
55.
T.
Shirafuji
,
K.
Tachibana
, and
Y.
Matsui
,
Jpn. J. Appl. Phys., Part 1
34
,
4239
(
1995
).
56.
W. M. M.
Kessels
,
J. P. M.
Hoefnagels
,
M. G. H.
Boogaarts
,
D. C.
Schram
, and
M. C. M.
van de Sanden
,
J. Appl. Phys.
89
,
2065
(
2001
).
57.
E.
Amanatides
,
S.
Stamou
, and
D.
Mataras
,
J. Appl. Phys.
90
,
5786
(
2001
).
58.
M. J.
Kushner
,
J. Appl. Phys.
63
,
2532
(
1988
).
59.
T.
Bakos
,
M. S.
Valipa
, and
D.
Maroudas
,
J. Chem. Phys.
126
,
114704
(
2007
).
60.
S.
Sriraman
,
E. S.
Aydil
, and
D.
Maroudas
,
J. Appl. Phys.
95
,
1792
(
2004
).
61.
G.
Dingemans
,
M. N.
van den Donker
,
D.
Hrunski
,
A.
Gordijn
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
Appl. Phys. Lett.
93
,
111914
(
2008
).
62.
S.
Nunomura
and
M.
Kondo
,
J. Phys. D
42
,
185210
(
2009
).
63.
Y.
Abe
,
A.
Fukushima
,
K.
Takeda
,
H.
Kondo
,
K.
Ishikawa
,
M.
Sekine
, and
M.
Hori
,
Appl. Phys. Lett.
101
,
172109
(
2012
).
64.
P.
Roca i Cabarrocas
,
N.
Layadi
,
T.
Heitz
,
B.
Drévillon
, and
I.
Solomon
,
Appl. Phys. Lett.
66
,
3609
(
1995
).
You do not currently have access to this content.