This paper presents methods of promoting the sensitivity of Microelectromechanical Systems (MEMS) vector hydrophone by increasing the sensing area of cilium and perfect insulative Parylene membrane. First, a low-density sphere is integrated with the cilium to compose a “lollipop shape,” which can considerably increase the sensing area. A mathematic model on the sensitivity of the “lollipop-shaped” MEMS vector hydrophone is presented, and the influences of different structural parameters on the sensitivity are analyzed via simulation. Second, the MEMS vector hydrophone is encapsulated through the conformal deposition of insulative Parylene membrane, which enables underwater acoustic monitoring without any typed sound-transparent encapsulation. Finally, the characterization results demonstrate that the sensitivity reaches up to −183 dB (500 Hz 0dB at 1 V/μPa), which is increased by more than 10 dB, comparing with the previous cilium-shaped MEMS vector hydrophone. Besides, the frequency response takes on a sensitivity increment of 6 dB per octave. The working frequency band is 20–500 Hz and the concave point depth of 8-shaped directivity is beyond 30 dB, indicating that the hydrophone is promising in underwater acoustic application.

1.
J. A.
McConnell
, “
Analysis of a compliantly suspended acoustic velocity sensor
,”
J. Acoust. Soc. Am.
113
,
1395
1405
(
2003
).
2.
B. M.
Abraham
, “
Low-cost dipole hydrophone for use in towed arrays
,”
AIP Conf. Proc.
368
,
189
201
(
1996
).
3.
A.
Nehorai
and
E.
Paldi
, “
Vector-sensor array processing for electromagnetic source localization
,”
IEEE Trans. Signal Process.
42
,
376
398
(
1994
).
4.
Q.
Sun
and
X.
Sun
, “
Design and manufacture of combined co-vibrating vector hydrophones
,” in
IEEE 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA)
(
2014
), pp.
186
189
.
5.
Q.
Xie
,
F.
Liao
, and
W. T.
Hu
, “
An orientation method for ultrasonic linear array signals and its application
,”
J. Appl. Mech. Mater.
513
,
4396
4400
(
2014
).
6.
W.
Ji
,
Q.
Xie
,
C. Q.
Wang
,
S. S.
Hou
, and
F. C.
Lv
, “
Partial Discharge DOA Estimation Based on Ultrasonic Array Sensor and Genetic MUSIC
,”
Advanced Materials Research
614
,
1142
1146
(
2013
).
7.
Y.
Wu
,
Z.
Hu
,
H.
Luo
, and
Y.
Hu
, “
Source number detectability by an acoustic vector sensor linear array and performance analysis
,”
IEEE J. Oceanic Eng.
39
,
769
778
(
2014
).
8.
L.
Beccai
,
S.
Roccella
,
A.
Arena
,
F.
Valvo
,
P.
Valdastri
,
A.
Menciassi
, and
P.
Dario
, “
Design and fabrication of a hybrid silicon three-axial force sensor for biomechanical applications
,”
Sens. Actuators, A
120
,
370
382
(
2005
).
9.
V.
Nesterov
and
U.
Brand
, “
Modelling and investigation of the silicon twin design 3D micro probe
,”
J. Micromech. Microeng.
15
,
514
520
(
2005
).
10.
N.
Chen
,
J.
Chen
,
J.
Engel
,
S.
Pandya
,
C.
Tucker
, and
C.
Liu
, “
Development and characterization of high sensitivity bioinspired artificial haircell sensor
,” in
Proceedings of Solid-State Sensors, Actuators, and Microsystems Workshop
(
2006
), Vol.
6
, pp.
4
8
.
11.
G. J.
Krijnen
,
M.
Dijkstra
,
J. J.
van Baar
,
S. S.
Shankar
,
W. J.
Kuipers
,
R. J.
de Boer
, and
R.
Wiegerink
, “
MEMS based hair flow-sensors as model systems for acoustic perception studies
,”
Nanotechnology
17
,
S84
S89
(
2006
).
12.
L.
Ascari
,
P.
Corradi
,
L.
Beccai
, and
C.
Laschi
, “
A miniaturized and flexible optoelectronic sensing system for tactile skin
,”
J. Micromech. Microeng.
17
,
2288
2298
(
2007
).
13.
A.
Qualtieri
,
F.
Rizzi
,
G.
Epifani
,
A.
Ernits
,
M.
Kruusmaa
, and
M.
De Vittorio
, “
Parylene-coated bioinspired artificial hair cell for liquid flow sensing
,”
Microelectron. Eng.
98
,
516
519
(
2012
).
14.
J.
Chen
,
J.
Engel
, and
G.
Liu
, “
Development of polymer-based artificial haircell using surface micromachining and 3D assembly
,” in
Proceedings of the 12th International Conference on Solid-State Sensors, Actuators and Microsystems
(
2003
), Vol.
2
, pp.
1035
1038
.
15.
C. Y.
Xue
,
S.
Chen
, and
W. D.
Zhang
, “
Design, fabrication, and preliminary characterization of a novel MEMS bionic vector hydrophone
,”
J. Microelectron.
38
,
1021
1026
(
2007
).
16.
C. Y.
Xue
,
Z. M.
Tong
,
B. Z.
Zhang
, and
W. D.
Zhang
, “
A novel vector hydrophone based on the piezoresistive effect of resonant tunneling diode
,”
IEEE Sens. J.
8
,
401
402
(
2008
).
17.
W. D.
Zhang
,
L. G.
Guan
, and
G. J.
Zhang
, “
Research of DOA estimation based on single MEMS vector hydrophone
,”
Sensors
9
,
6823
6834
(
2009
).
18.
T.
Trantidou
,
M.
Tariq
,
C. M.
Terracciano
,
C.
Toumazou
, and
T.
Prodromakis
, “
Parylene C-based flexible electronics for pH monitoring applications
,”
Sensors
14
,
11629
11639
(
2014
).
19.
K.
Länge
,
S.
Grimm
, and
S. M.
Rapp
, “
Chemical modification of Parylene C coatings for SAW biosensors
,”
Sens. Actuators, B
125
,
441
446
(
2007
).
20.
J.
Jakabovič
,
J.
Kováč
,
M.
Weis
,
D.
Haško
,
R.
Srnánek
,
P.
Valent
, and
R.
Resel
, “
Preparation and properties of thin Parylene layers as the gate dielectrics for organic field effect transistors
,”
Microelectron. J.
40
,
595
597
(
2009
).
21.
D.
Feili
,
M.
Schuettler
,
T.
Doerge
,
S.
Kammer
,
K. P.
Hoffmann
, and
T.
Stieglitz
, “
Flexible organic field effect transistors for biomedical microimplants using polyimide and Parylene C as substrate and insulator layers
,”
J. Micromech. Microeng.
16
,
1555
1561
(
2006
).
22.
W.
Li
,
D. C.
Rodger
,
E.
Meng
,
S.
Member
,
J. D.
Weiland
,
M. S.
Humayun
, and
Y.
Tai
, “
Wafer-level Parylene packaging with integrated RF electronics for wireless retinal prostheses
,”
J. Microelectromech. Syst.
19
,
735
742
(
2010
).
23.
X.
Xie
,
L.
Rieth
,
L.
Williams
,
S.
Negi
,
R.
Bhandari
,
R.
Caldwell
, and
F.
Solzbacher
, “
Long-term reliability of Al2O3 and Parylene C bilayer encapsulated Utah electrode array based neural interfaces for chronic implantation
,”
J. Neural Eng.
11
,
26016
26024
(
2014
).
24.
C.
Vančura
,
I.
Dufour
,
S. M.
Heinrich
,
F.
Josse
, and
A.
Hierlemann
, “
Analysis of resonating microcantilevers operating in a viscous liquid environment
,”
Sens. Actuators, A
141
,
43
51
(
2008
).
25.
T.
Fei
, “
Vector hydrophone calibration equipment
,”
Acoust. Technol.
Supplement,
673
677
(
2005
).
26.
B. B.
Bauer
, “
Laboratory calibrator for gradient hydrophones
,”
J. Acoust. Soc. Am.
39
,
585
586
(
1966
).
27.
F.
Schloss
and
M.
Strasberg
, “
Hydrophone calibration in a vibrating column of liquid
,”
J. Acoust. Soc. Am.
34
,
958
960
(
1962
).
You do not currently have access to this content.