Strong field electron emission from a nanoscale tip can cause a temperature rise at the tip apex due to Joule heating. This becomes particularly important when the current value grows rapidly, as in the pre-breakdown (the electrostatic discharge) condition, which may occur near metal surfaces operating under high electric fields. The high temperatures introduce uncertainties in calculations of the current values when using the Fowler–Nordheim equation, since the thermionic component in such conditions cannot be neglected. In this paper, we analyze the field electron emission currents as the function of the applied electric field, given by both the conventional Fowler–Nordheim field emission and the recently developed generalized thermal field emission formalisms. We also compare the results in two limits: discrete (atomistic simulations) and continuum (finite element calculations). The discrepancies of both implementations and their effect on final results are discussed. In both approaches, the electric field, electron emission currents, and Joule heating processes are simulated concurrently and self-consistently. We show that the conventional Fowler–Nordheim equation results in significant underestimation of electron emission currents. We also show that Fowler–Nordheim plots used to estimate the field enhancement factor may lead to significant overestimation of this parameter especially in the range of relatively low electric fields.

1.
A Multi-TeV Linear Collider Based on CLIC Technology: CLIC Conceptual Design Report
, edited by
M.
Aicheler
,
P.
Burrows
,
M.
Draper
,
T.
Garvey
,
P.
Lebrun
,
K.
Peach
,
N.
Phinney
,
H.
Schmickler
,
D.
Schulte
, and
N.
Tog
(
CERN
,
2012
).
2.
J. W.
Wang
,
G. A.
Loew
,
R. J.
Loewen
,
R. D.
Ruth
,
A. E.
Vlieks
,
I.
Wilson
, and
W.
Wuensch
, “
SLAC/CERN high gradient tests of an x-band accelerating section
,”
Report Nos. sLAC-PUB-9977, CERN-SL-95-27-RF, and CLIC-NOTE-283
,
1995
.
3.
N.
Shipman
,
S.
Calatroni
,
R. M.
Jones
, and
W.
Wuensch
, “
Measurement of the dynamic response of the CERN dc spark system and preliminary estimates of the breakdown turn-on time
,” e-print arXiv:1206.0573 (
2012
).
4.
H.
Timko
,
K.
Ness Sjobak
,
L.
Mether
,
S.
Calatroni
,
F.
Djurabekova
,
K.
Matyash
,
K.
Nordlund
,
R.
Schneider
, and
W.
Wuensch
,
Contrib. Plasma Phys.
55
,
299
(
2015
).
5.
W. P.
Dyke
,
J. K.
Trolan
,
E. E.
Martin
, and
J. P.
Barbour
,
Phys. Rev.
91
,
1043
(
1953
).
6.
C. K.
Sinclair
,
Nucl. Instrum. Methods Phys. Res. Sect. A
557
,
69
(
2006
).
7.
R. M.
Jones
,
C. E.
Adolphsen
,
J. W.
Wang
, and
Z.
Li
,
Phys. Rev. Spec Top.—Accel. Beams
9
,
102001
(
2006
).
8.
R. M.
Jones
,
Phys. Rev. Spec. Top.—Accel. Beams
12
,
104801
(
2009
).
9.
R. J.
Noer
,
Appl. Phys. A
28
,
1
(
1982
).
10.
A.
Navitski
,
S.
Lagotzky
,
D.
Reschke
,
X.
Singer
, and
G.
Müller
,
Phys. Rev. Spec. Top.—Accel. Beams
16
,
112001
(
2013
).
11.
A.
Grudiev
,
S.
Calatroni
, and
W.
Wuensch
,
Phys. Rev. Spec. Top.—Accel. Beams
12
,
102001
+ (
2009
).
12.
S.
Lagotzky
,
P.
Serbun
,
G.
Müller
,
T.
Muranaka
, and
S.
Calatroni
, in
5th International Particle Accelerator Conference
(
2014
).
13.
A. S.
Pohjonen
,
F.
Djurabekova
,
K.
Nordlund
,
A.
Kuronen
, and
S. P.
Fitzgerald
,
J. Appl. Phys.
110
,
023509
(
2011
).
14.
A. S.
Pohjonen
,
F.
Djurabekova
,
A.
Kuronen
,
S. P.
Fitzgerald
, and
K.
Nordlund
,
Philos. Mag.
92
,
3994
(
2012
).
15.
A. S.
Pohjonen
,
S.
Parviainen
,
T.
Muranaka
, and
F.
Djurabekova
,
J. Appl. Phys.
114
,
033519
(
2013
).
16.
Z.
Insepov
,
J. H.
Norem
, and
A.
Hassanein
,
Phys. Rev. Spec. Top.—Accel. Beams
7
,
122001
(
2004
).
17.
Z.
Insepov
,
J.
Norem
, and
S.
Veitzer
,
Nucl. Instrum. Methods Phys. Res. Sect. B
268
,
642
(
2010
).
18.
V.
Zadin
,
A.
Pohjonen
,
A.
Aabloo
,
K.
Nordlund
, and
F.
Djurabekova
,
Phys. Rev. Spec. Top.—Accel. Beams
17
,
103501
(
2014
).
19.
A. C.
Keser
,
T. M.
Antonsen
,
G. S.
Nusinovich
,
D. G.
Kashyn
, and
K. L.
Jensen
,
Phys. Rev. ST Accel. Beams
16
,
092001
(
2013
).
20.
Z.
Insepov
and
J.
Norem
,
J. Vac. Sci. Technol. A
31
,
011302
(
2013
).
21.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London Ser. A
119
,
173
(
1928
).
22.
R.
Marcus
,
K. K.
Chin
,
Y.
Yuan
,
H.
Wang
, and
W.
Carr
,
IEEE Trans. Electron Devices
37
,
1545
(
1990
).
23.
S.
Sun
and
L. K.
Ang
,
J. Appl. Phys.
113
,
144902
(
2013
).
24.
L.-J.
Pegg
and
R. A.
Hatton
,
ACS Nano
6
,
4722
(
2012
).
25.
E. L.
Murphy
and
R. H.
Good
, Jr.
,
Phys. Rev.
102
,
1464
(
1956
).
26.
K. L.
Jensen
,
J. Appl. Phys.
102
,
024911
(
2007
).
27.
S.
Parviainen
,
F.
Djurabekova
,
H.
Timko
, and
K.
Nordlund
,
Comput. Mater. Sci.
50
,
2075
(
2011
).
28.
A.
Kyritsakis
and
J. P.
Xanthakis
, in
2014 27th International Vacuum Nanoelectronics Conference (IVNC)
(
IEEE
,
2014
), pp.
118
119
.
29.
K. L.
Jensen
, “
Electron emission physics
,” in
Advances in Imaging and Electron Physics
(
Academic Press
,
2007
).
30.
K. L.
Jensen
,
Y. Y.
Lau
,
D. W.
Feldman
, and
P. G.
O'Shea
,
Phys. Rev. Spec. Top.—Accel. Beams
11
,
081001
(
2008
).
31.
R. G.
Forbes
and
J. H. B.
Deane
,
Proc. R. Soc. A
463
,
2907
(
2007
).
32.
C.
Herring
and
M. H.
Nichols
,
Rev. Mod. Phys.
21
,
185
(
1949
).
33.
Multiphysics Modeling and Simulation Software—COMSOL.
34.
F.
Djurabekova
,
S.
Parviainen
,
A.
Pohjonen
, and
K.
Nordlund
,
Phys. Rev. E
83
,
026704
(
2011
).
35.
S.
Parviainen
,
F.
Djurabekova
,
A.
Pohjonen
, and
K.
Nordlund
,
Nucl. Instrum. Methods Phys. Res. Sect. B
269
,
1748
(
2010
).
36.
R. G.
Forbes
,
C. J.
Edgcombe
, and
U.
Valdrè
,
Ultramicroscopy
95
,
57
(
2003
).
37.
C. E.
Schuster
,
M. G.
Vangel
, and
H. A.
Schafft
,
Microelectron. Reliab.
41
,
239
(
2001
).
38.
A. E.
Yarimbiyik
,
H. A.
Schafft
,
R. A.
Allen
,
M. E.
Zaghloul
, and
D. L.
Blackburn
,
Microelectron. Reliab.
46
,
1050
(
2006
).
39.
Z. M.
Zhang
,
Nano/Microscale Heat Transfer
(
McGraw Hill Professional
,
2007
).
40.
H.
Timko
,
K.
Matyash
,
R.
Schneider
,
F.
Djurabekova
,
K.
Nordlund
,
A.
Hansen
,
A.
Descoeudres
,
J.
Kovermann
,
A.
Grudiev
,
W.
Wuensch
,
S.
Calatroni
, and
M.
Taborelli
,
Contrib. Plasma Phys.
51
,
5
(
2011
).
41.
V.
Zadin
,
A.
Krasheninnikov
,
F.
Djurabekova
, and
K.
Nordlund
,
Phys. Status Solidi B
252
,
144
(
2015
).
42.
M.
Kildemo
,
Nucl. Instrum. Methods Phys. Res. Sect. A
530
,
596
(
2004
).
43.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes
, 3rd ed. (
Cambridge University Press
,
2007
).
44.
A. C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
,
ACM Trans. Math. Software
31
,
363
396
(
2005
).
45.
P.
Deuflhard
,
Numer. Math.
22
,
289
(
1974
).
46.
A.
Descoeudres
,
Y.
Levinsen
,
S.
Calatroni
,
M.
Taborelli
, and
W.
Wuensch
,
Phys. Rev. Spec. Top.—Accel. Beams
12
,
092001
(
2009
).
47.
A.
Descoeudres
,
F.
Djurabekova
, and
K.
Nordlund
, “
DC breakdown experiments with cobalt electrodes
,”
Report No. CERN-OPEN-2011-029
,
2009
.
You do not currently have access to this content.