FePt and (FePt)91.2Ag8.8 alloy films were deposited by magnetron sputtering. The average coercivity of (FePt)91.2Ag8.8 films reaches 8.51 × 105 A/m, which is 0.63 × 105 A/m higher than that of the corresponding FePt films. Ag addition effectively promotes the FePt L10 ordering transition at a relatively low annealing temperature of 400 °C. The promotion mechanism was investigated by using in situ high-resolution transmission electron microscopy (HRTEM) and ex situ X-ray absorption fine structure (XAFS). The concurrence of ordering transition and Ag segregation in FePtAg alloy films was first observed by using in situ heating HRTEM. The time-resolved evolution reveals more details on the role of Ag addition in FePt low-temperature ordering. Ex situ XAFS results further confirm that Ag replaces Fe sites in the as-deposited films and segregates from FePt-Ag solid solution phase through annealing at elevated temperatures. The segregation of Ag atoms leaves vacancies in the grain. The vacancy formation is believed to accelerate the diffusion of Fe and Pt atoms, which is critical for the L10 ordering transition.

1.
S.
Sun
,
C. B.
Murray
,
D.
Weller
,
L.
Folks
, and
A.
Moser
,
Science
287
,
1989
(
2000
).
2.
C. Y.
You
,
Y. K.
Takahashi
, and
K.
Hono
,
J. Appl. Phys.
100
,
056105
(
2006
).
3.
J. L.
Tsai
,
J. C.
Huang
, and
H. W.
Tai
,
J. Appl. Phys.
111
,
07A709
(
2012
).
4.
E. Y.
Huang
and
M. H.
Kryder
,
J. Appl. Phys.
115
,
213906
(
2014
).
5.
A.
Martins
,
N. M.
Souza-Neto
,
M. C. A.
Fantini
,
A. D.
Santos
,
R. J.
Prado
, and
A. Y.
Ramos
,
J. Appl. Phys.
100
,
013905
(
2006
).
6.
W. C.
Wen
,
R. V.
Chepulskii
,
L. W.
Wang
,
S.
Curtarolo
, and
C. H.
Lai
,
Acta Mater.
60
,
7258
(
2012
).
7.
C.
Feng
,
B. H.
Li
,
G.
Han
,
J.
Teng
,
Y.
Jiang
,
T.
Yang
, and
G. H.
Yu
,
Thin Solid Films
515
,
8009
(
2007
).
8.
Z. L.
Zhaoa
,
J. S.
Chen
,
J.
Ding
,
K.
Inaba
, and
J. P.
Wang
,
J. Magn. Magn. Mater.
282
,
105
(
2004
).
9.
M.
Nakanishi
,
G.
Furusawa
,
K.
Waki
,
Y.
Hattori
,
T.
Kamino
,
K.
Sasaki
,
K.
Kuroda
, and
H.
Saka
,
Mater. Trans.
48
,
2572
(
2007
).
10.
D.
Ravelosona
,
C.
Chappert
,
V.
Mathet
, and
H.
Bernas
,
J. Appl. Phys.
87
,
5771
(
2000
).
11.
U.
Wiedwald
,
A.
Klimmer
,
B.
Kern
,
L.
Han
,
H. G.
Boyen
, and
P.
Ziemann
,
Appl. Phys. Lett.
90
,
062508
(
2007
).
12.
Y.
Endo
,
N.
Kikuchi
,
O.
Kitakami
, and
Y.
Shimada
,
J. Appl. Phys.
89
,
7065
(
2001
).
13.
A.
Ludwig
,
N.
Zotova
,
A.
Savan
, and
S.
Groudeva-Zotova
,
Appl. Surf. Sci.
252
,
2518
(
2006
).
14.
T.
Maeda
,
T.
Kai
,
A.
Kikitsu
,
T.
Nagase
, and
J.
Akiyama
,
Appl. Phys. Lett.
80
,
2147
(
2002
).
15.
B.
Wang
,
K.
Barmak
, and
T. J.
Klemmer
,
J. Appl. Phys.
109
,
07B739
(
2011
).
16.
Y.
Liu
,
Y.
Jiang
,
N.
Kadasala
,
X.
Zhang
,
C.
Mao
,
Y.
Wang
,
H.
Liu
,
Y.
Liu
,
J.
Yang
, and
Y.
Yanb
,
J. Solid State Chem.
215
,
167
(
2014
).
17.
L.
Zhang
,
Y. K.
Takahashi
,
A.
Perumal
, and
K.
Honon
,
J. Magn. Magn. Mater.
322
,
2658
(
2010
).
18.
Y.
Tokuoka
,
Y.
Seto
,
T.
Kato
, and
S.
Iwata
,
J. Appl. Phys.
115
,
17B716
(
2014
).
19.
B. S. D. Ch. S.
Varaprasad
,
Y. K.
Takahashi
,
J.
Wang
,
T.
Ina
,
T.
Nakamura
,
W.
Ueno
,
K.
Nitta
,
T.
Uruga
, and
K.
Hono
,
Appl. Phys. Lett.
104
,
222403
(
2014
).
20.
J. S.
Chen
,
Y. Z.
Zhou
,
C. J.
Sun
,
S. W.
Han
, and
G. M.
Chow
,
Appl. Phys. Lett.
98
,
131914
(
2011
).
21.
B.
Wu
,
Y.
Yu
, and
X.
Bi
,
Mater. Res. Innovations
18
,
S4-751
(
2014
).
22.
R. A.
Ristau
,
K.
Barmak
,
L. H.
Lewis
,
K. R.
Coffey
, and
J. K.
Howard
,
J. Appl. Phys.
86
,
4527
(
1999
).
23.
P. T. L.
Minha
,
N. P.
Thuy
, and
N. T. N.
Chan
,
J. Magn. Magn. Mater.
277
,
187
(
2004
).
24.
S.
Chikazumi
,
Physics of Ferromagnetism
(
Oxford Science
,
New York
,
1997
), Chap. 18.
25.
I.
Radisavljević
,
N.
Novaković
,
N.
Ivanović
,
N.
Romčević
,
M.
Manasijević
, and
H. E.
Mahnke
,
Physica B
404
,
5032
(
2009
).
26.
R. L.
Zong
,
S. P.
Wen
,
F.
Zeng
,
Y.
Gao
,
C.
Song
,
B.
He
, and
F.
Pan
,
Appl. Surf. Sci.
253
,
2993
(
2007
).
You do not currently have access to this content.