Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm3, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm2 with a deviation of 2.6%. This new study showed the high performance of this diamond detector in small photon beams, in comparison with various commercially available passive and active dosimeters.

1.
Almaviva
,
S.
,
Cancaglioni
,
I.
,
Consorti
,
R.
,
De Notaristefani
,
F.
,
Manfredotti
,
C.
,
Marinelli
,
M.
,
Milani
,
E.
,
Petrucci
,
A.
,
Prestopino
,
G.
,
Verona
,
C.
, and
Verona-Rinati
,
G.
, “
Synthetic single crystal diamond dosimeters for intensity modulated radiation therapy applications
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
608
,
191
194
(
2009
).
2.
Bassinet
,
C.
,
Huet
,
C.
,
Derreumaux
,
S.
,
Brunet
,
G.
,
Chea
,
M.
,
Baumann
,
M.
,
Lacornerie
,
T.
,
Gaudaire-Josset
,
S.
,
Trompier
,
F.
,
Roch
,
P.
,
Boisserie
,
G.
, and
Clairand
,
I.
, “
Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife and linear accelerators equipped with microMLC and circular cones
,”
Med. Phys.
40
,
071725
(
2013
).
3.
Bassinet
,
C.
,
Robbes
,
I.
,
Barbier
,
L.
,
Baumann
,
M.
,
Kernisant
,
B.
, and
Trompier
,
F.
, “
Characterization of 7LiF:Mg,Ti TLD micro-cubes
,”
Radiat. Meas.
45
,
646
648
(
2010
).
4.
Bergonzo
,
P.
,
Tromson
,
D.
,
Descamps
,
C.
,
Hamrita
,
H.
,
Mer
,
C.
,
Tranchant
,
N.
, and
Nesladek
,
M.
, “
Improving diamond detectors: A device case
,”
Diamond Relat. Mater.
16
,
1038
1043
(
2007
).
5.
Betzel
,
G. T.
,
Lansley
,
S. P.
,
Baluti
,
F.
,
Reinisch
,
L.
, and
Meyer
,
J.
, “
Clinical investigations of a CVD diamond detector for radiotherapy dosimetry
,”
Phys. Med.
28
,
144
152
(
2012
).
7.
Bouchard
,
H.
,
Kamio
,
Y.
,
Palmans
,
H.
,
Seuntjens
,
J.
, and
Duane
,
S.
, “
Detector dose response in megavoltage small photon beams. II. Pencil beam perturbation effects
,”
Med. Phys.
42
,
6048
6061
(
2015b
).
6.
Bouchard
,
H.
,
Seuntjens
,
J.
,
Duane
,
S.
,
Kamio
,
Y.
, and
Palmans
,
H.
, “
Detector response in megavoltage small photon beams. I. Theoretical concepts
,”
Med. Phys.
42
,
6033
6047
(
2015a
).
8.
BrainLAB Physics
, Technical Reference Guide Rev 1.0,
2008
.
9.
Ciancaglioni
,
I.
,
Marinelli
,
M.
,
Milani
,
E.
,
Prestopino
,
G.
,
Verona
,
C.
,
Verona-Rinati
,
G.
,
Consorti
,
R.
,
Petrucci
,
A.
, and
De Notaristefani
,
F.
, “
Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams
,”
Med. Phys.
39
,
4493
4501
(
2012
).
10.
Cranmer-Sargison
,
G.
,
Weston
,
S.
,
Evans
,
J. A.
,
Sidhu
,
N. P.
, and
Thwaites
,
D. I.
, “
Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors
,”
Med. Phys.
38
,
6592
6
602
(
2011
).
11.
Das
,
I. J.
,
Ding
,
G. X.
, and
Ahnesjö
,
A.
, “
Small fields: Nonequilibrium radiation dosimetry
,”
Med. Phys.
35
,
206
215
(
2008
).
12.
De Angelis
,
C.
,
Onori
,
S.
,
Pacilio
,
M.
,
Cirrone
,
G. A. P.
,
Cuttone
,
G.
,
Raffaele
,
L.
,
Bucciolini
,
M.
, and
Mazzocchi
,
S.
, “
An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams
,”
Med. Phys.
29
,
248
254
(
2002
).
13.
Dzierma
,
Y.
,
Licht
,
N.
,
Nuesken
,
F.
, and
Ruebe
,
C.
, “
Beam properties and stability of a flattening-filter free 7 MV beam—An overview
,”
Med. Phys.
39
,
2595
2602
(
2012
).
14.
Eklund
,
K.
and
Ahnesjö
,
A.
, “
Spectral perturbations from silicon diode detector encapsulation and shielding in photon fields
,”
Med. Phys.
37
,
6055
6060
(
2010
).
15.
Fenwick
,
J. D.
,
Kumar
,
S.
,
Scott
,
A. J.
, and
Nahum
,
A. E.
, “
Using cavity theory to describe the dependence on detector density of dosimeter response in non-equilibrium small fields
,”
Phys. Med. Biol.
58
,
2901
2923
(
2013
).
16.
Fidanzio
,
A.
,
Azario
,
L.
,
Miceli
,
R.
,
Russo
,
A.
, and
Piermattei
,
A.
, “
PTW-diamond detector: dose rate and particle type dependence
,”
Med. Phys.
27
,
2589
2593
(
2000
).
17.
Fowler
,
J. F.
,
Radiation Dosimetry
, edited by
Attix
,
F. H.
and
Roesch
,
W. C.
(
Academic Press
,
New York
,
1966
).
18.
Francescon
,
P.
,
Kilby
,
W.
,
Satariano
,
N.
, and
Cora
,
S.
, “
Monte Carlo simulated correction factors for machine specific reference field dose calibration and output factor measurement using fixed and iris collimators on the CyberKnife system
,”
Phys. Med. Biol.
57
,
3741
3758
(
2012
).
19.
Gagnon
,
J. C.
,
Thériault
,
D.
,
Guillot
,
M.
,
Archambault
,
L.
,
Beddar
,
S.
,
Gingras
,
L.
, and
Beaulieu
,
L.
, “
Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance
,”
Med. Phys.
39
,
429
436
(
2012
).
20.
Garino
,
Y.
,
Lo Giudice
,
A.
,
Manfredotti
,
C.
,
Marinelli
,
M.
,
Milani
,
E.
,
Tucciarone
,
A.
, and
Verona-Rinati.
,
G.
, “
Performances of homoepitaxial single crystal diamond in diagnostic x-ray dosimetry
,”
Appl. Phys. Lett.
88
,
151901
(
2006
).
21.
Górka
,
G.
,
Nilsson
,
B.
,
Fernández-Varea
,
J. M.
,
Svensson
,
R.
, and
Brahme
,
A.
, “
Influence of electrodes on the photon energy deposition in CVD-diamond dosimeters studied with the Monte Carlo code PENELOPE
,”
Phys. Med. Biol.
51
,
3607
3623
(
2006
).
22.
Griessbach
,
I.
,
Lapp
,
M.
,
Bohsung
,
J.
,
Gademann
,
G.
, and
Harder
,
D.
, “
Dosimetric characteristics of a new unshielded silicon diode and its application in clinical photon and electron beams
,”
Med. Phys.
32
,
3750
3754
(
2005
).
23.
Hoban
,
P. W.
,
Heydarian
,
M.
,
Beckham
,
W. A.
, and
Beddoe
,
A. H.
, “
Dose rate dependence of a PTW diamond detector in the dosimetry of a 6 MV photon beam
,”
Phys. Med. Biol.
39
,
1219
1229
(
1994
).
24.
Huet
,
C.
,
Dagois
,
S.
,
Derreumaux
,
S.
,
Trompier
,
F.
,
Chenaf
,
C.
, and
Robbes
,
I.
, “
Characterization and optimization of EBT2 radiochromic films dosimetry system for precise measurements of output factors in small fields used in radiotherapy
,”
Radiat. Meas.
47
,
40
49
(
2012
).
25.
Lárraga-Gutiérrez
,
J. M.
,
Ballesteros-Zebadúa
,
P.
,
Rodríguez-Ponce
,
M.
,
García-Garduño
,
O. A.
, and
de la Cruz
,
O. O.
, “
Properties of a commercial PTW-60019 synthetic diamond detector for the dosimetry of small radiotherapy beams
,”
Phys. Med. Biol.
60
,
905
924
(
2015
).
26.
Laub
,
W. U.
and
Crilly
,
R.
, “
Clinical radiation therapy measurements with a new commercial synthetic single crystal diamond detector
,”
J. Appl. Clin. Med. Phys.
15
,
4890
(
2014
).
27.
Laub
,
W. U.
and
Wong
,
T.
, “
The volume effect of detectors in the dosimetry of small fields used in IMRT
,”
Med. Phys.
30
,
341
347
(
2003
).
28.
Marsolat
,
F.
,
Tromson
,
D.
,
Tranchant
,
N.
,
Pomorski
,
M.
,
Lazaro-Ponthus
,
D.
,
Bassinet
,
C.
,
Huet
,
C.
,
Derreumaux
,
S.
,
Chea
,
M.
,
Boisserie
,
G.
,
Alvarez
,
J.
, and
Bergonzo
,
P.
, “
Diamond dosimeter for small beam stereotactic radiotherapy
,”
Diamond Relat. Mater.
33
,
63
70
(
2013a
).
29.
Marsolat
,
F.
,
Tromson
,
D.
,
Tranchant
,
N.
,
Pomorski
,
M.
,
Le Roy
,
M.
,
Donois
,
M.
,
Moignau
,
F.
,
Ostrowsky
,
A.
,
De Carlan
,
L.
,
Bassinet
,
C.
,
Huet
,
C.
,
Derreumaux
,
S.
,
Chea
,
M.
,
Cristina
,
K.
,
Boisserie
,
G.
, and
Bergonzo
,
P.
, “
A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors
,”
Phys. Med. Biol.
58
,
7647
7660
(
2013b
).
30.
Martens
,
C.
,
De Wagter
,
C.
, and
De Neve
,
W.
, “
The value of the PinPoint ion chamber for characterization of small field segments used in intensity-modulated radiotherapy
,”
Phys. Med. Biol.
45
,
2519
2530
(
2000
).
31.
Mazurier
,
J.
,
Salvat
,
F.
,
Chauvenet
,
B.
, and
Barthe
,
J.
, “
Simulation of photon beams from a Saturne 43 accelerator using the code PENELOPE
,”
Phys. Med.
15
,
101
110
(
1999
).
32.
Moignier
,
C.
,
Huet
,
C.
, and
Makovicka
,
L.
, “
Determination of the k((fclin,fmsr)(Qclin,Qmsr)) correction factors for detectors used with an 800 MU/min CyberKnife system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method
,”
Med. Phys.
41
,
071702
(
2014
).
33.
Morales
,
J. E.
,
Crowe
,
S. B.
,
Hill
,
R.
,
Freeman
,
N.
, and
Trapp
,
J. V.
, “
Dosimetry of cone-defined stereotactic radiosurgery fields with commercial synthetic diamond detector
,”
Med. Phys.
41
,
111702
(
2014
).
34.
Pantelis
,
E.
,
Moutsatsos
,
A.
,
Zourari
,
K.
,
Kilby
,
W.
,
Antypas
,
C.
,
Papagiannis
,
P.
,
Karaiskos
,
P.
,
Georgiou
,
E.
, and
Sakelliou
,
L.
, “
On the implementation of a recently proposed dosimetric formalism to a robotic radiosurgery system
,”
Med. Phys.
37
,
2369
2379
(
2010
).
35.
Pantelis
,
E.
,
Moutsatsos
,
A.
,
Zourari
,
K.
,
Petrokokkinos
,
L.
,
Sakelliou
,
L.
,
Kilby
,
W.
,
Antypas
,
C.
,
Papagiannis
,
P.
,
Karaiskos
,
P.
,
Georgiou
,
E.
, and
Seimenis
,
I.
, “
On the output factor measurements of the CyberKnife iris collimator small fields: Experimental determination of the kQclin,Qmsrfclin,fmsr correction factors for microchamber and diode detectors
,”
Med. Phys.
39
,
4875
4885
(
2012
).
36.
Ralston
,
A.
,
Liu
,
P.
,
Warrener
,
K.
,
McKenzie
,
D.
, and
Suchowerska
,
N.
, “
Small field diode correction factors derived using an air core fibre optic scintillation dosimeter and EBT2 film
,”
Phys. Med. Biol.
57
,
2587
2602
(
2012
).
37.
Ralston
,
A.
,
Tyler
,
M.
,
Liu
,
P.
,
McKenzie
,
D.
, and
Suchowerska
,
N.
, “
Over-response of synthetic microdiamond detectors in small radiation fields
,”
Phys. Med. Biol.
59
,
5873
5881
(
2014
).
38.
Salvat
,
F.
,
Fernandez-Varea
,
J. M.
, and
Sempau
,
J.
,
PENELOPE-2006: A code System for Monte Carlo Simulation of Electron and Photon Transport
(
OECD Nuclear Energy Agency
,
2006
).
39.
Scherf
,
C.
,
Peter
,
C.
,
Moog
,
J.
,
Licher
,
J.
,
Kara
,
E.
,
Zink
,
K.
,
Rödel
,
C.
, and
Ramm
,
U.
, “
Silicon diodes as an alternative to diamond detectors for depth dose curves and profile measurements of photon and electron radiation
,”
Strahlenther Onkol.
185
,
530
536
(
2009
).
40.
Schirru
,
F.
,
Kisielewicz
,
K.
,
Nowak
,
T.
, and
Marczewska
,
B.
, “
Single crystal diamond detector for radiotherapy
,”
J. Phys. D: Appl. Phys.
43
,
265101
(
2010
).
41.
Scott
,
A. J. D.
,
Kumar
,
S.
,
Nahum
,
A. E.
, and
Fenwick
,
J. D.
, “
Characterizing the influence of detector density on dosimeter response in non-equilibrium small photon fields
,”
Phys. Med. Biol.
57
,
4461
4476
(
2012
).
42.
Scott
,
A. J. D.
,
Nahum
,
A. E.
, and
Fenwick
,
J. D.
, “
Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields
,”
Med. Phys.
35
,
4671
4684
(
2008
).
43.
Spadaro
,
S.
,
Conte
,
A.
,
Pimpinella
,
M.
, and
Guerra
,
A. S.
, “
Electrical and dosimetric characterization of a CVD diamond detector with high sensitivity
,”
Radiat. Meas.
48
,
1
6
(
2013
).
44.
Tranchant
,
N.
,
Tromson
,
D.
,
Descamps
,
C.
,
Isambert
,
A.
,
Hamrita
,
H.
,
Bergonzo
,
P.
, and
Nesladek
,
M.
, “
High mobility single crystal diamond detectors for dosimetry: Application to radiotherapy
,”
Diamond Relat. Mater.
17
,
1297
1301
(
2008
).
45.
Tromson
,
D.
,
Rebisz-Pomorska
,
M.
,
Tranchant
,
N.
,
Isambert
,
A.
,
Moignau
,
F.
,
Moussier
,
A.
,
Marczewska
,
B.
, and
Bergonzo
,
P.
, “
Single crystal CVD diamond detector for high resolution dose measurement for IMRT and novel radiation therapy needs
,”
Diamond Relat. Mater.
19
,
1012
1016
(
2010
).
47.
Underwood
,
T. S.
,
Winter
,
H. C.
,
Hill
,
M. A.
, and
Fenwick
,
J. D.
, “
Detector density and small field dosimetry: Integral versus point dose measurement schemes
,”
Med. Phys.
40
,
082102
(
2013
).
46.
Underwood
,
T. S. A.
,
Rowland
,
B. C.
,
Ferrand
,
R.
, and
Vieillevigne
,
L.
, “
Application of the Exradin W1 scintillator to determine Ediode 60017 and microDiamond 60019 correction factors for relative dosimetry within small MV and FFF fields
,”
Phys. Med. Biol.
60
,
6669
6683
(
2015
).
You do not currently have access to this content.