Cross-plane superlattices composed of nanoscale layers of alternating potential wells and barriers have attracted great attention for their potential to provide thermoelectric power factor improvements and higher ZT figure of merit. Previous theoretical works have shown that the presence of optimized potential barriers could provide improvements to the Seebeck coefficient through carrier energy filtering, which improves the power factor by up to 40%. However, experimental corroboration of this prediction has been extremely scant. In this work, we employ quantum mechanical electronic transport simulations to outline the detrimental effects of random variation, imperfections, and non-optimal barrier shapes in a superlattice geometry on these predicted power factor improvements. Thus, we aim to assess either the robustness or the fragility of these theoretical gains in the face of the types of variation one would find in real material systems. We show that these power factor improvements are relatively robust against: overly thick barriers, diffusion of barriers into the body of the wells, and random fluctuations in barrier spacing and width. However, notably, we discover that extremely thin barriers and random fluctuation in barrier heights by as little as 10% is sufficient to entirely destroy any power factor benefits of the optimized geometry. Our results could provide performance optimization routes for nanostructured thermoelectrics and elucidate the reasons why significant power factor improvements are not commonly realized in superlattices, despite theoretical predictions.

1.
M.
Zebarjadi
,
K.
Esfarjani
,
M. S.
Dresselhaus
,
Z. F.
Ren
, and
G.
Chen
,
Energy Environ. Sci.
5
,
5147
(
2012
).
2.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
3.
A. I.
Boukai
,
Y.
Bunimovich
,
J. T.
-
Kheli
,
J.-K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
171
(
2008
).
4.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
168
(
2008
).
5.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature
413
,
597
602
(
2001
).
6.
G.
Zeng
,
J. E.
Bowers
,
J. M. O.
Zide
,
A. C.
Gossard
,
W.
Kim
,
S.
Singer
,
A.
Majumdar
,
R.
Singh
,
Z.
Bian
,
Y.
Zhang
, and
A.
Shakouri
,
Appl. Phys. Lett.
88
,
113502
(
2006
).
7.
M.
Zebarjadi
,
G.
Joshi
,
G.
Zhu
,
B.
Yu
,
A.
Minnich
,
Y.
Lan
,
X.
Wang
,
M.
Dresselhaus
,
Z.
Ren
, and
G.
Chen
,
Nano Lett.
11
(
6
),
2225
2230
(
2011
).
8.
B.
Yu
,
M.
Zebarjadi
,
H.
Wang
,
K.
Lukas
,
H.
Wang
,
D.
Wang
,
C.
Opeil
,
M.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
12
(
4
),
2077
2082
(
2012
).
9.
B. M.
Curtin
,
E. A.
Codecido
,
S.
Krämer
, and
J. E.
Bowers
,
Nano Lett.
13
(
11
),
5503
5508
(
2013
).
10.
N.
Neophytou
and
H.
Kosina
,
Appl. Phys. Lett.
105
,
073119
(
2014
).
11.
C. M.
Jaworski
,
V.
Kulbachinskii
, and
J. P.
Heremans
,
Phys. Rev. B
80
,
125208
(
2009
).
12.
A.
Popescu
,
L. M.
Woods
,
J.
Martin
, and
G. S.
Nolas
,
Phys. Rev. B
79
,
205302
(
2009
).
13.
N.
Neophytou
,
X.
Zianni
,
H.
Kosina
,
S.
Frabboni
,
B.
Lorenzi
, and
D.
Narducci
,
Nanotechnology
24
,
205402
(
2013
).
14.
D.
Vashaee
and
A.
Shakouri
,
Phys. Rev. Lett.
92
,
106103
(
2004
).
15.
L. D.
Zhao
,
S. H.
Lo
,
J. Q.
He
,
L.
Hao
,
K.
Biswas
,
J.
Androulakis
,
C. I.
Wu
,
T. P.
Hogan
,
D. Y.
Chung
,
V. P.
Dravid
, and
M. G.
,
Kanatzidis
,
J. Am. Chem. Soc.
133
,
20476
20487
(
2011
).
16.
J.-H.
Bahk
,
Z.
Bian
, and
A.
Shakouri
,
Phys. Rev. B
89
,
075204
(
2014
).
17.
J.-H.
Bahk
and
A.
Shakouri
,
Appl. Phys. Lett.
105
,
052106
(
2014
).
18.
D.
Narducci
,
E.
Selezneva
,
G.
Cerofolini
,
S.
Frabboni
, and
G.
Ottaviani
,
J. Solid State Chem.
193
,
19
25
(
2012
).
19.
W.
Liu
,
X.
Yan
,
G.
Chen
, and
Z.
Ren
,
Nano Energy
1
,
42
56
(
2012
).
20.
J. M. O.
Zide
,
D.
Vashaee
,
Z. X.
Bian
,
G.
Zeng
,
J. E.
Bowers
,
A.
Shakouri
, and
A. C.
Gossard
,
Phys. Rev. B
74
,
205335
(
2006
).
21.
A.
Shakouri
,
Annu. Rev. Mater. Res.
41
,
399
431
(
2011
).
22.
H.
Alam
and
S.
Ramakrishna
,
Nano Energy
2
,
190
212
(
2013
).
23.
N.
Neophytou
and
H.
Kosina
,
J. Appl. Phys.
114
,
044315
(
2013
).
24.
R.
Kim
and
M.
Lundstrom
,
J. Appl. Phys.
110
,
034511
(
2011
).
25.
R.
Kim
and
M. S.
Lundstrom
,
J. Appl. Phys.
111
,
024508
(
2012
).
26.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge, MA
,
1997
).
27.
M.
Pourfath
,
The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation
(
Springer
,
Wien, New York
,
2014
).
28.
A.
Price
,
A.
Martinez
,
R.
Valin
, and
J. R.
Barker
,
J. Phys.: Conf. Ser.
526
,
012007
(
2014
).
29.
R.
Rhyner
and
M.
Luisier
,
J. Appl. Phys.
114
,
223708
(
2013
).
30.
S. O.
Koswatta
,
S.
Hasan
,
M. S.
Lundstrom
,
M. P.
Anantram
, and
D. E.
Nikonov
,
IEEE Trans. Electron Devices
54
,
2339
2351
(
2007
).
31.
R.
Lake
,
G.
Klimeck
,
R. C.
Bowen
, and
D.
Jovanovic
,
J. Appl. Phys.
81
,
7845
7869
(
1997
).
32.
Y.
Nishio
and
T.
Hirano
,
Jpn. J. Appl. Phys.
36
,
170
174
(
1997
).
33.
M.
Hu
and
D.
Poulikakos
,
Nano Lett.
12
,
5487
5494
(
2012
).
34.
L.
Shi
,
J.
Jiang
,
G.
Zhang
, and
B.
Li
,
Appl. Phys. Lett.
101
,
233114
(
2012
).
35.
M.
Saleemi
,
A.
Famengo
,
S.
Fiameni
,
S.
Boldrini
,
S.
Battiston
,
M.
Johnsson
,
M.
Muhammed
, and
M. S.
Toprak
,
J. Alloys Compd.
619
,
31
37
(
2015
).
36.
S.
Perumal
,
S.
Gorsse
,
U.
Ail
,
M.
Prakasam
,
S.
Vivès
,
R.
Decourt
, and
A. M.
Umarji
,
Mater. Lett.
155
,
41
43
(
2015
).
37.
R.
Kim
,
C.
Jeong
, and
M. S.
Lundstrom
,
J. Appl. Phys.
107
,
054502
(
2010
).
You do not currently have access to this content.