Detailed polarization switching behavior of an Al2O3/Pb(Zr,Ti)O3 (AO/PZT) structure is examined by comparing the phenomenological thermodynamic model to the experimental polarization–voltage (P-V) results. Amorphous AO films with various thicknesses (2–10 nm) were deposited on the polycrystalline 150-nm-thick PZT film. The thermodynamic calculation showed that the transition from the ferroelectric-like state to the paraelectric-like state with increasing AO thickness occurs at ∼3 nm thickness. This paraelectric-like state should have exhibited a negative capacitance effect without permanent polarization switching if no other adverse effects are involved. However, experiments showed typical ferroelectric-like hysteresis loops where the coercive voltage increased with the increasing AO thickness, which could be explained by the carrier injection through the thin AO layer and trapping of the carriers at the AO/PZT interface. The fitting of the experimental P-V loops using the thermodynamic model considering the depolarization energy effect showed that trapped charge density was ∼±0.1 Cm−2 and critical electric field at the Pt electrode/AO interface, at which the carrier transport occurs, was ∼±10 MV/cm irrespective of the AO thickness. Energy band model at each electrostatic state along the P-V loop was provided to elucidate correlation between macroscopic polarization and internal charge state of the stacked films.

1.
J. F.
Scott
,
Ferroelectric Memories
(
Springer-Verlag
,
Berlin, Germany
,
2000
).
2.
J.
Ye
,
S. T.
Lim
,
M.
Bosman
,
S.
Gu
,
Y.
Zheng
,
H. H.
Tan
,
C.
Jagadish
,
X.
Sun
, and
K. L.
Teo
,
Sci. Rep.
2
,
533
(
2012
).
3.
Y. W.
Yin
,
J. D.
Burton
,
Y. M.
Kim
,
A. Y.
Borisevich
,
S. J.
Pennycook
,
S. M.
Yang
,
T. W.
Noh
,
A.
Gruverman
,
X. G.
Li
,
E. Y.
Tsymbal
, and
Q.
Li
,
Nat. Mater.
12
,
397
(
2013
).
4.
T. D.
Onuta
,
Y.
Wang
,
S. E.
Lofland
, and
I.
Takeuchi
,
Adv. Mater.
27
,
202
(
2015
).
5.
Z.
Wen
,
C.
Li
,
D.
Wu
,
A.
Li
, and
N.
Ming
,
Nat. Mater.
12
,
617
(
2013
).
6.
E. Y.
Tsymbal
and
A.
Gruverman
,
Nat. Mater.
12
,
602
(
2013
).
7.
M. H.
Park
,
H. J.
Lee
,
G. H.
Kim
,
Y. J.
Kim
,
J. H.
Kim
,
J. H.
Lee
, and
C. S.
Hwang
,
Adv. Funct. Mater.
21
,
4305
(
2011
).
8.
H. M.
Christen
,
E. D.
Specht
,
S. S.
Silliman
, and
K. S.
Harshavardhan
,
Phys. Rev. B
68
,
020101
(
2003
).
9.
H. N.
Lee
,
H. M.
Christen
,
M. F.
Chisholm
,
C. M.
Rouleau
, and
D. H.
Lowndes
,
Nature
433
,
395
(
2005
).
10.
A. I.
Khan
,
D.
Bhowmik
,
P.
Yu
,
S. J.
Kim
,
X.
Pan
,
R.
Ramesh
, and
S.
Salahuddin
,
Appl. Phys. Lett.
99
,
113501
(
2011
).
11.
D. J. R.
Appleby
,
N. K.
Ponon
,
K. S. K.
Kwa
,
B.
Zou
,
P. K.
Petrov
,
T.
Wang
,
N. M.
Alford
, and
A.
O'Neill
,
Nano Lett.
14
,
3864
(
2014
).
12.
W.
Gao
,
A.
Khan
,
X.
Marti
,
C.
Nelson
,
C.
Serrao
,
J.
Ravichandran
,
R.
Ramesh
, and
S.
Salahuddin
,
Nano Lett.
14
,
5814
(
2014
).
13.
V. V.
Zhirnov
and
R. K.
Cavin
,
Nat. Nanotechnol.
3
,
77
(
2008
).
14.
G.
Catalan
,
D.
Jimenez
, and
A.
Gruverman
,
Nat. Mater.
14
,
137
(
2015
).
15.
A. I.
Khan
,
K.
Chatterjee
,
B.
Wang
,
S.
Drapcho
,
L.
You
,
C.
Serrao
,
S. R.
Bakaul
,
R.
Ramesh
, and
S.
Salahuddin
,
Nat. Mater.
14
,
182
(
2015
).
16.
C. S.
Hwang
,
Adv. Electron. Mater.
1
,
1400056
(
2015
).
17.
S.
Salahuddin
and
S.
Datta
,
Nano Lett.
8
,
405
(
2008
).
18.
C. M.
Krowne
,
S. W.
Kirchoefer
,
W.
Chang
,
J. M.
Pond
, and
L. M. B.
Alldredge
,
Nano Lett.
11
,
988
(
2011
).
19.
Y. J.
Kim
,
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
W.
Jeon
,
T.
Moon
,
K. D.
Kim
,
D. S.
Jeong
,
H.
Yamada
, and
C. S.
Hwang
, “
Frustration of Negative Capacitance in Al2O3/BaTiO3 Bilayer Structure
,”
Sci. Rep.
(to be published).
20.
A. Q.
Jiang
,
H. J.
Lee
,
G. H.
Kim
, and
C. S.
Hwang
,
Adv. Mater.
21
,
2870
(
2009
).
21.
D. J.
Kim
,
J. Y.
Jo
,
Y. S.
Kim
,
Y. J.
Chang
,
J. S.
Lee
,
J.-G.
Yoon
,
T. K.
Song
, and
T. W.
Noh
,
Phys. Rev. Lett.
95
,
237602
(
2005
).
22.
Y. A.
Genenko
and
D. C.
Lupascu
,
Phys. Rev. B
75
,
184107
(
2007
).
23.
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
(
1956
).
24.
F.
Bernardini
,
V.
Fiorentini
, and
D.
Vanderbilt
,
Phys. Rev. Lett.
79
,
3958
(
1997
).
25.
M.
Nakada
,
K.
Ohashi
,
H.
Tsuda
,
E.
Kawate
, and
J.
Akedo
, in
Proceedings of the IEEE International Symposium on Applications of Ferroelectrics, Nara, Japan, 27–31 May 2007
(
IEEE
,
USA
,
2007
), pp.
528
530
.
26.
M.
Li
,
J.
Fortin
,
J. Y.
Kim
,
G.
Fox
,
F.
Chu
,
T.
Davenport
,
T.-M.
Lu
, and
X.-C.
Zhang
,
IEEE J. Sel. Top. Quantum Electron.
7
,
624
(
2001
).
27.
A.
Cano
and
D.
Jimenez
,
Appl. Phys. Lett.
97
,
133509
(
2010
).
28.
M.
Specht
,
M.
Staüdele
,
S.
Jakschik
, and
U.
Schroüder
,
Appl. Phys. Lett.
84
,
3076
(
2004
).
29.
J. C.
Ranuárez
,
M. J.
Deen
, and
C.-H.
Chen
,
Microelectron. Reliab.
46
,
1939
(
2006
).
30.
Y.-C.
Yeo
,
T.-J.
King
, and
C.
Hu
,
J. Appl. Phys.
92
,
7266
(
2002
).
31.
32.
P. V.
Thanh
,
B. N. Q.
Trinh
,
T.
Miyasako
,
P. T.
Tue
,
E.
Tokumitsu
, and
T.
Shimoda
,
Ferroelectr., Lett. Sect.
40
,
17
(
2013
).
33.
J.
Junquera
and
P.
Ghosez
,
Nature
422
,
506
(
2003
).
34.
R.
Meyer
,
J. R.
Contreras
,
A.
Petraru
, and
H.
Kohlstedt
,
Integr. Ferroelectr.
64
,
77
(
2004
).
35.
J.
Hoffman
,
X.
Pan
,
J. W.
Reiner
,
F. J.
Walker
,
J.
Han
,
C. H.
Ahn
, and
T.
Ma
,
Adv. Mater.
22
,
2957
(
2010
).
36.
K. M.
Rabe
,
C. H.
Ahn
, and
J. M.
Triscone
,
Physics of Ferroelectrics: A Modern Perspective
(
Springer
,
Berlin, Germany
,
2007
).
You do not currently have access to this content.