We investigate the ionization and displacement effects of an electron-beam (e-beam) on amorphous Gd2Zr2O7 synthesized by the co-precipitation and calcination methods. The as-received amorphous specimens were irradiated under electron beams at different energies (80 keV, 120 keV, and 2 MeV) and then characterized by X-ray diffraction and transmission electron microscopy. A metastable fluorite phase was observed in nanocrystalline Gd2Zr2O7 and is proposed to arise from the relatively lower surface and interface energy compared with the pyrochlore phase. Fast crystallization could be induced by 120 keV e-beam irradiation (beam current = 0.47 mA/cm2). The crystallization occurred on the nanoscale upon ionization irradiation at 400 °C after a dose of less than 1017 electrons/cm2. Under e-beam irradiation, the activation energy for the grain growth process was approximately 10 kJ/mol, but the activation energy was 135 kJ/mol by calcination in a furnace. The thermally activated ionization process was considered the fast crystallization mechanism.

1.
A. E.
Ringwood
,
S. E.
Kesson
,
N. G.
Ware
,
W.
Hibberson
, and
A.
Major
,
Nature
278
,
219
(
1979
).
2.
W. J.
Weber
and
R. C.
Ewing
,
Science
289
,
2051
(
2000
).
3.
W. J.
Weber
,
R. C.
Ewing
,
C.
Catlow
,
T. D.
De La Rubia
,
L.
Hobbs
,
C.
Kinoshita
,
H.
Matzke
,
A.
Motta
,
M.
Nastasi
, and
E.
Salje
,
J. Mater. Res.
13
,
1434
(
1998
).
4.
R. C.
Ewing
,
W. J.
Weber
, and
J.
Lian
,
J. Appl. Phys.
95
,
5949
(
2004
).
5.
S. E.
Kesson
and
A. E.
Ringwood
, in
Scientific Basis for Nuclear Waste Management VII. Proceedings of the Seventh International Symposium
, edited by
G. L.
McVay
(
Mater. Res. Soc. Symp. Proc.
,
1984
), Vol.
26
, p.
507
.
6.
R.
Devanathan
,
W. J.
Weber
, and
J. D.
Gale
,
Energy Environ. Sci.
3
,
1551
(
2010
).
7.
J.
Wang
,
F.
Zhang
,
J.
Lian
,
R. C.
Ewing
, and
U.
Becker
,
Acta Mater.
59
,
1607
(
2011
).
8.
G.
Sattonnay
and
R.
Tetot
,
J. Phys.: Condens. Matter
26
,
055403
(
2014
).
9.
S. X.
Wang
,
B. D.
Begg
,
L. M.
Wang
,
R. C.
Ewing
,
W. J.
Weber
, and
K. V. G.
Kutty
,
J. Mater. Res.
14
,
4470
(
1999
).
10.
J.
Lian
,
J.
Chen
,
L.
Wang
,
R.
Ewing
,
J.
Farmer
,
L.
Boatner
, and
K.
Helean
,
Phys. Rev. B
68
,
134107
(
2003
).
11.
J.
Lian
,
X.
Zu
,
K.
Kutty
,
J.
Chen
,
L.
Wang
, and
R.
Ewing
,
Phys. Rev. B
66
,
054108
(
2002
).
12.
K. E.
Sickafus
,
R. W.
Grimes
,
J. A.
Valdez
,
A.
Cleave
,
M.
Tang
,
M.
Ishimaru
,
S. M.
Corish
,
C. R.
Stanek
, and
B. P.
Uberuaga
,
Nat. Mater.
6
,
217
(
2007
).
13.
K. E.
Sickafus
,
L.
Minervini
,
R. W.
Grimes
,
J. A.
Valdez
,
M.
Ishimaru
,
F.
Li
,
K. J.
McClellan
, and
T.
Hartmann
,
Science
289
,
748
(
2000
).
14.
Y.
Zhang
,
R.
Sachan
,
O. H.
Pakarinen
,
M. F.
Chisholm
,
P.
Liu
,
H.
Xue
, and
W. J.
Weber
,
Nat. Commun.
6
,
8049
(
2015
).
15.
J.
Lian
,
L.
Wang
,
K.
Sun
, and
R. C.
Ewing
,
Microsc. Res. Tech.
72
,
165
(
2009
).
16.
F.
Lu
,
Y.
Shen
,
X.
Sun
,
Z.
Dong
,
R. C.
Ewing
, and
J.
Lian
,
Acta Mater.
61
,
2984
(
2013
).
17.
Y.
Zhang
,
J.
Lian
,
C. M.
Wang
,
W.
Jiang
,
R. C.
Ewing
, and
W. J.
Weber
,
Phys. Rev. B
72
,
094112
(
2005
).
18.
Y.
Zhang
,
C. M.
Wang
,
M. H.
Engelhard
, and
W. J.
Weber
,
J. Appl. Phys.
100
,
113533
(
2006
).
19.
I. T.
Bae
,
Y. W.
Zhang
,
W. J.
Weber
,
M.
Higuchi
, and
L. A.
Giannuzzi
,
Appl. Phys. Lett.
90
,
021912
(
2007
).
20.
R. C.
Ewing
and
T. J.
Headley
,
J. Nucl. Mater.
119
,
102
(
1983
).
21.
W. J.
Weber
and
H.
Matzke
,
Mater. Lett.
5
,
9
(
1986
).
22.
W. J.
Weber
,
J. W.
Wald
, and
H.
Matzke
,
J. Nucl. Mater.
138
,
196
(
1986
).
23.
W. J.
Weber
,
J. W.
Wald
, and
H.
Matzke
,
Mater. Lett.
3
,
173
(
1985
).
24.
A.
Meldrum
,
L. A.
Boatner
, and
R. C.
Ewing
,
J. Mater. Res.
12
,
1816
(
1997
).
25.
N.
Yu
,
K. E.
Sickafus
, and
M.
Nastasi
,
Mater. Chem. Phys.
46
,
161
(
1996
).
26.
W. J.
Weber
,
D. M.
Duffy
,
L.
Thomé
, and
Y.
Zhang
,
Curr. Opin. Solid State Mater. Sci.
19
,
1
(
2015
).
27.
Y.
Zhang
,
M.
Ishimaru
,
T.
Varga
,
T.
Oda
,
C.
Hardiman
,
H.
Xue
,
Y.
Katoh
,
S.
Shannon
, and
W. J.
Weber
,
Phys. Chem. Chem. Phys.
14
,
13429
(
2012
).
28.
J.
Zhang
,
J.
Lian
,
A. F.
Fuentes
,
F.
Zhang
,
M.
Lang
,
F.
Lu
, and
R. C.
Ewing
,
Appl. Phys. Lett.
94
,
243110
(
2009
).
29.
T. D.
Shen
,
S.
Feng
,
M.
Tang
,
J. A.
Valdez
,
Y.
Wang
, and
K. E.
Sickafus
,
Appl. Phys. Lett.
90
,
263115
(
2007
).
30.
S.
Dey
,
J. W.
Drazin
,
Y.
Wang
,
J. A.
Valdez
,
T. G.
Holesinger
,
B. P.
Uberuaga
, and
R. H.
Castro
,
Sci. Rep.
5
,
7746
(
2015
).
31.
T.
Hoüchbauer
,
A.
Misra
,
K.
Hattar
, and
R. G.
Hoagland
,
J. Appl. Phys.
98
,
123516
(
2005
).
32.
T. D.
Shen
,
Nucl. Instrum. Methods Phys. Res., Sect. B
266
,
921
(
2008
).
33.
J.
Wang
,
A.
Nakamura
, and
M.
Takeda
,
Solid State Ionics
164
,
185
(
2003
).
34.
J. M.
McHale
,
A.
Auroux
,
A. J.
Perrotta
, and
A.
Navrotsky
,
Science
277
,
788
(
1997
).
35.
A. L.
Patterson
,
Phys. Rev.
56
,
978
(
1939
).
36.
L.
Lu
,
N.
Tao
,
L.
Wang
,
B.
Ding
, and
K.
Lu
,
J. Appl. Phys.
89
,
6408
(
2001
).
37.
W. J.
Weber
,
Nucl. Instrum. Methods Phys. Res., Sect. B
166
,
98
(
2000
).
38.
W. J.
Weber
,
E.
Zarkadoula
,
O. H.
Pakarinen
,
R.
Sachan
,
M. F.
Chisholm
,
P.
Liu
,
H.
Xue
,
K.
Jin
, and
Y.
Zhang
,
Sci. Rep.
5
,
7726
(
2015
).
39.
H. Y.
Xiao
,
W. J.
Weber
,
Y.
Zhang
,
X. T.
Zu
, and
S.
Li
,
Sci. Rep.
5
,
8265
(
2015
).
40.
G.
Lulli
,
P. G.
Merli
, and
M. V.
Antisari
,
Phys. Rev. B
36
,
8038
(
1987
).
41.
G.
Lulli
and
P. G.
Merli
,
Phys. Rev. B
47
,
14023
(
1993
).
42.
R.
Devanathan
and
W. J.
Weber
,
Nucl. Instrum. Methods Phys. Res., Sect. B
268
,
2857
(
2010
).
43.
E.
Sonder
and
W. A.
Sibley
, in
Point Defects in Solids
, edited by
J. H.
Crawford
and
L. M.
Slifkin
(
Plenum
,
New York
,
1972
), Vol. 1, p.
201
.
44.
F.
Spaepen
and
D.
Turnbull
,
Crystallization Processes
Academic
(
New York
,
1982
), Chap. 2, pp.
15
42
.
45.
P.
Carrez
,
K.
Demyk
,
H.
Leroux
,
P.
Cordier
,
A. P.
Jones
, and
L.
D'Hendecourt
,
Meteorit. Planet. Sci.
37
,
1615
(
2002
).
You do not currently have access to this content.