Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si32–xH42–2xOx hydrogenated silicon NC with bridged oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.

1.
A.
Feltrin
and
A.
Freundlich
,
Renewable Energy
33
,
180
(
2008
).
2.
H.
Huff
,
Into the Nano Era: Moore's Law Beyond Planar Silicon CMOS
, Springer Series in Material Science (
Springer
,
Berlin, Heidelberg
,
2008
).
3.
J.
Derr
,
K.
Dunn
,
D.
Riabinina
,
F.
Martin
,
M.
Chaker
, and
F.
Rosei
,
Physica E
41
,
668
(
2009
).
4.
V.
Kumar
,
K.
Saxena
, and
A.
Shukla
,
Micro Nano Lett.
8
,
311
(
2013
).
5.
E. G.
Barbagiovanni
,
D. J.
Lockwood
,
P. J.
Simpson
, and
L. V.
Goncharova
,
J. Appl. Phys.
111
,
034307
(
2012
).
6.
A.
Nurbawono
,
S.
Liu
, and
C.
Zhang
,
J. Chem. Phys.
142
,
154705
(
2015
).
7.
G.
Seguini
,
C.
Castro
,
S.
Schamm-Chardon
,
G.
BenAssayag
,
P.
Pellegrino
, and
M.
Perego
,
Appl. Phys. Lett.
103
,
023103
(
2013
).
8.
A.
Puzder
,
A.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
Phys. Rev. Lett.
88
,
097401
(
2002
).
9.
A. D.
Zdetsis
,
S.
Niaz
, and
E. N.
Koukaras
,
Microelectron. Eng.
112
,
227
(
2013
).
10.
Y.
Gao
,
D.
Neuhauser
,
R.
Baer
, and
E.
Rabani
,
J. Chem. Phys.
142
,
034106
(
2015
).
11.
D.
Bandyopadhyay
,
J. Appl. Phys.
104
,
084308
(
2008
).
12.
I.
Vasiliev
,
J. R.
Chelikowsky
, and
R. M.
Martin
,
Phys. Rev. B
65
,
121302
(
2002
).
13.
Y.
Ma
,
X.
Chen
,
X.
Pi
, and
D.
Yang
,
J. Phys. Chem. C
115
,
12822
(
2011
).
14.
S.
Chopra
and
B.
Rai
,
J. Nanostruct. Chem.
5
,
195
(
2015
).
15.
E.
Ramos
,
B. M.
Monroy
,
J. C.
Alonso
,
L. E.
Sansores
,
R.
Salcedo
, and
A.
Martinez
,
J. Phys. Chem. C
116
,
3988
(
2012
).
16.
S. M.
Lee
,
K. J.
Kim
,
D. W.
Moon
, and
H.
Kim
,
J. Nanosci. Nanotechnol.
12
,
5835
(
2012
).
17.
A.
Puzder
,
A.
Williamson
,
F.
Reboredo
, and
G.
Galli
,
Phys. Rev. Lett.
91
,
157405
(
2003
).
18.
P.
Carrier
,
Phys. Rev. B
80
,
075319
(
2009
).
19.
E. W.
Draeger
,
J. C.
Grossman
,
A. J.
Williamson
, and
G.
Galli
,
J. Chem. Phys.
120
,
10807
(
2004
).
20.
Y.
Shu
and
B. G.
Levine
,
J. Phys. Chem. C
119
,
1737
(
2015
).
21.
D.
Kovalev
and
M.
Fujii
,
Adv. Mater.
17
,
2531
(
2005
).
22.
M.
Balaguer
and
E.
Matveeva
,
J. Nanopart. Res.
12
,
2907
(
2010
).
23.
A.
Puzder
,
A.
Williamson
,
J. C.
Grossman
, and
G.
Galli
,
J. Chem. Phys.
117
,
6721
(
2002
).
24.
N. B.
Nguyen
,
C.
Dufour
, and
S.
Petit
,
J. Phys.: Condens. Matter
20
,
455209
(
2008
).
25.
K.
Seino
,
F.
Bechstedt
, and
P.
Kroll
,
Phys. Rev. B
82
,
085320
(
2010
).
26.
D. J.
Lockwood
and
L.
Tsybeskov
,
J. Nanophotonics
2
,
022501
(
2008
).
27.
G. H.
Lu
,
M.
Huang
,
M.
Cuma
, and
F.
Liu
,
Surf. Sci.
588
,
61
(
2005
).
28.
J. M.
Soler
,
E.
Artacho
,
J. D.
Gale
,
A.
Garcia
,
J.
Junquera
,
P.
Ordejon
, and
D.
Sanchez-Portal
,
J. Phys.: Condens. Matter
14
,
2745
(
2002
).
29.
M.
Fuchs
and
M.
Scheffler
,
Comput. Phys. Commun.
119
,
67
(
1999
).
30.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
31.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
32.
D.
Rocca
,
R.
Gebauer
,
Y.
Saad
, and
S.
Baroni
,
J. Chem. Phys.
128
,
154105
(
2008
).
33.
O. B.
Malcioglu
,
R.
Gebauer
,
D.
Rocca
, and
S.
Baroni
,
Comput. Phys. Commun.
182
,
1744
(
2011
).
34.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L. M.
Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
35.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
36.
L.
Brus
,
J. Phys. Chem.
90
,
2555
(
1986
).
37.
K.
Dohnalova
,
A. N.
Poddubny
,
A. A.
Prokofiev
,
W. D.
de Boer
,
C. P.
Umesh
,
J. M.
Paulusse
,
H.
Zuilhof
, and
T.
Gregorkiewicz
,
Light: Sci. Appl.
2
,
e47
(
2013
).
38.
A. J.
Williamson
,
J. C.
Grossman
,
R. Q.
Hood
,
A.
Puzder
, and
G.
Galli
,
Phys. Rev. Lett.
89
,
196803
(
2002
).
39.
H. G.
Liao
,
D.
Zherebetskyy
,
H.
Xin
,
C.
Czarnik
,
P.
Ercius
,
H.
Elmlund
,
M.
Pan
,
L. W.
Wang
, and
H.
Zheng
,
Science
345
,
916
(
2014
).
40.
V.
Kocevski
,
O.
Eriksson
, and
J.
Rusz
,
Phys. Rev. B
87
,
245401
(
2013
).
41.
I.
Vasiliev
,
S.
Ögüt
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
86
,
1813
(
2001
).
You do not currently have access to this content.