The potential capabilities of resonators based on two dimensional arrays of re-entrant posts is demonstrated. Such posts may be regarded as magnetically coupled lumped element microwave harmonic oscillators, arranged in a 2D lattices structure, which is enclosed in a 3D cavity. By arranging these elements in certain 2D patterns, we demonstrate how to achieve certain requirements with respect to field localisation and device spectra. Special attention is paid to symmetries of the lattices, mechanical tuning, design of areas of high localisation of magnetic energy; this in turn creates unique discrete mode spectra. We demonstrate analogies between systems designed on the proposed platform and well known physical phenomena such as polarisation, frustration, and Whispering Gallery Modes. The mechanical tunability of the cavity with multiple posts is analysed, and its consequences to optomechanical applications is calculated. One particular application to quantum memory is demonstrated with a cavity design consisting of separate resonators analogous to discrete Fabry–Pérot resonators. Finally, we propose a generalised approach to a microwave system design based on the concept of Programmable Cavity Arrays.

1.
M. E.
Tobar
and
D. G.
Blair
,
J. Phys. D: Appl. Phys.
26
,
2276
(
1993
).
2.
N.
Klein
,
H. J.
Krause
,
S.
Vitusevich
,
H.
Rongen
,
A.
Kurakin
, and
O. N.
Shaforost
,
2011 IEEE MTT-S International Microwave Symposium Digest (MTT), 5–10 June 2011
, p.
1
.
3.
C. R.
Locke
,
E. N.
Ivanov
,
J. G.
Hartnett
,
P. L.
Stanwix
, and
M. E.
Tobar
,
Rev. Sci. Instrum.
79
,
051301
(
2008
).
4.
M.
Goryachev
,
W. G.
Farr
, and
M. E.
Tobar
,
Appl. Phys. Lett.
103
,
262404
(
2013
).
5.
W. G.
Farr
,
D. L.
Creedon
,
M.
Goryachev
,
K.
Benmessaï
, and
M. E.
Tobar
,
Phys. Rev. B
88
,
224426
(
2013
).
6.
M.
Goryachev
,
W. G.
Farr
,
N. D.
Carmo Carvalho
,
D. L.
Creedon
,
J.-M.
Le Floch
,
S.
Probst
,
P.
Bushev
, and
M. E.
Tobar
,
Appl. Phys. Lett.
106
,
232401
(
2015
).
7.
P. L.
Stanwix
,
M. E.
Tobar
,
P.
Wolf
,
M.
Susli
,
C. R.
Locke
,
E. N.
Ivanov
,
J.
Winterflood
, and
F.
van Kann
,
Phys. Rev. Lett.
95
,
040404
(
2005
).
8.
S. R.
Parker
,
G.
Rybka
, and
M. E.
Tobar
,
Phys. Rev. D
87
,
115008
(
2013
).
9.
A.
Blais
,
R.-S.
Huang
,
A.
Wallraff
,
S. M.
Girvin
, and
R. J.
Schoelkopf
,
Phys. Rev. A
69
,
062320
(
2004
).
10.
R.
Amsüss
,
C.
Koller
,
T.
Nöbauer
,
S.
Putz
,
S.
Rotter
,
K.
Sandner
,
S.
Schneider
,
M.
Schramböck
,
G.
Steinhauser
,
H.
Ritsch
,
J.
Schmiedmayer
, and
J.
Majer
,
Phys. Rev. Lett.
107
,
060502
(
2011
).
11.
S.
Probst
,
A.
Tkalčec
,
H.
Rotzinger
,
D.
Rieger
,
J.-M.
Le Floch
,
M.
Goryachev
,
M. E.
Tobar
,
A. V.
Ustinov
, and
P. A.
Bushev
,
Phys. Rev. B
90
,
100404
(
2014
).
12.
M.
Goryachev
and
M. E.
Tobar
,
New J. Phys.
17
,
023003
(
2015
).
13.
M.
Goryachev
and
M.
Tobar
, “
Microwave frequency magnetic field manipulation systems and methods and associated application instruments, apparatus and system
,”
patent AU2014903143
(12 August
2014
).
14.
W.
Hansen
,
J. Appl. Phys.
9
,
654
(
1938
).
15.
J.-M. L.
Floch
,
Y.
Fan
,
M.
Aubourg
,
D.
Cros
,
N.
Carvalho
,
Q.
Shan
,
J.
Bourhill
,
E.
Ivanov
,
G.
Humbert
,
V.
Madrangeas
, and
M.
Tobar
,
Rev. Sci. Instrum.
84
,
125114
(
2013
).
16.
K.
Fujisawa
,
IRE Trans. Microwave Theory Tech.
6
,
344
(
1958
).
17.
N. C.
Carvalho
,
Y.
Fan
,
J.-M.
Le Floch
, and
M. E.
Tobar
,
Rev. Sci. Instrum.
85
,
104705
(
2014
).
18.
M.
Bassan
,
R.
Ballantini
,
A.
Chincarini
,
G.
Gemme
,
M.
Iannuzzi
,
A.
Moleti
,
R. F.
Parodi
, and
R.
Vaccarone
,
J. Phys.: Conf. Ser.
122
,
012031
(
2008
).
19.
D. G.
Blair
,
E. N.
Ivanov
,
M. E.
Tobar
,
P. J.
Turner
,
F.
van Kann
, and
I. S.
Heng
,
Phys. Rev. Lett.
74
,
1908
(
1995
).
20.
O. D.
Aguiar
,
L. A.
Andrade
,
J. J.
Barroso
,
F.
Bortoli
,
L. A.
Carneiro
,
P. J.
Castro
,
C. A.
Costa
,
K. M. F.
Costa
,
J. C. N.
de Araujo
,
A. U.
de Lucena
,
W.
de Paula
,
E. C.
de Rey Neto
,
S. T.
de Souza
,
A. C.
Fauth
,
C.
Frajuca
,
G.
Frossati
,
S. R.
Furtado
,
N. S.
Magalhães
,
R. M.
Marinho
, Jr.
,
J. L.
Melo
,
O. D.
Miranda
,
N. F.
Oliveira
, Jr.
,
K. L.
Ribeiro
,
C.
Stellati
,
W. F.
Velloso
, Jr.
, and
J.
Weber
,
Classical Quantum Gravity
23
,
S239
(
2006
).
21.
S.
Kalhori
,
N.
Elander
,
J.
Svennebrink
, and
S.
Stone-Elander
,
J. Microwave Power Electromagn. Energy
38
,
125
(
2003
), available at http://jmpee.org/JMPEE_PDFs/38-2_bl/vol38(2)-pg125-Kalhori.pdf.
22.
J.
Baker-Jarvis
and
B.
Riddle
,
Dielectric Measurements Using a Reentrant Cavity: Mode-Matching Analysis
(
NIST
,
1996
), see http://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1384.pdf.
23.
E. F.
May
,
R. C.
Miller
, and
A. R. H.
Goodwin
,
J. Chem. Eng. Data
47
,
102
(
2002
).
24.
M.
Goryachev
,
W. G.
Farr
,
D. L.
Creedon
,
Y.
Fan
,
M.
Kostylev
, and
M. E.
Tobar
,
Phys. Rev. Appl.
2
,
054002
(
2014
).
25.
D. L.
Creedon
,
J.-M.
Le Floch
,
M.
Goryachev
,
W. G.
Farr
,
S.
Castelletto
, and
M. E.
Tobar
,
Phys. Rev. B
91
,
140408
(
2015
).
26.
A.
Pekalski
,
J.
Przystawa
, and
G.
Toulouse
, “
Lecture notes in physics
,” in
Modern Trends in the Theory of Condensed Matter
(
Springer
,
Berlin, Heidelberg
,
1980
), Vol.
115
, pp.
195
203
.
27.
M.
Goryachev
,
W. G.
Farr
,
D. L.
Creedon
, and
M. E.
Tobar
,
Phys. Rev. A
89
,
013810
(
2014
).
28.
P.
Bourgeois
and
V.
Giordano
,
IEEE Trans. Microwave Theory Tech.
53
,
3185
(
2005
).
29.
Y.
Filipov
,
S.
Kharkovsky
, and
A.
Kirichenko
,
Microwave Opt. Technol. Lett.
10
,
124
(
1995
).
30.
D.
Meiser
and
P.
Meystre
,
Phys. Rev. A
74
,
065801
(
2006
).
31.
A.
Mazzei
,
S.
Götzinger
,
L. de S.
Menezes
,
G.
Zumofen
,
O.
Benson
, and
V.
Sandoghdar
,
Phys. Rev. Lett.
99
,
173603
(
2007
).
32.
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
184
,
1234
(
2013
).
You do not currently have access to this content.