We demonstrate a design of two-dimensional density-near-zero (DNZ) membrane structure to control sound transmission. The membrane structure is theoretically modeled as a network of inductors and capacitors, and the retrieved effective mass density is confirmed to be close to zero at the resonance frequency. This scheme proposes a convenient way to construct the unit cell for achieving DNZ at the designed frequency. Further simulations clearly demonstrate that the membrane-network has the ability to control sound transmission such as achieving cloaking, high transmission through sharp corners, and high-efficient wave splitting. Different from the phononic-crystal-based DNZ materials, the compact DNZ membrane-network is in deep subwavelength scale and provides a strong candidate for acoustic functional devices.

1.
A.
Alù
,
M. G.
Silveirinha
,
A.
Salandrino
, and
N.
Engheta
,
Phys. Rev. B
75
,
155410
(
2007
).
2.
Y.
Wu
and
J.
Li
,
Appl. Phys. Lett.
102
,
183105
(
2013
).
3.
Y.
Xu
and
H.
Chen
,
Appl. Phys. Lett.
98
,
113501
(
2011
).
4.
M.
Silveirinha
and
N.
Engheta
,
Phys. Rev. Lett.
97
,
157403
(
2006
).
5.
B.
Edwards
,
A.
Alù
,
M.
Silveirinha
, and
N.
Engheta
,
J. Appl. Phys.
105
,
044905
(
2009
).
6.
A.
Ourir
,
A.
Maurel
, and
V.
Pagneux
,
Opt. Lett.
38
,
2092
(
2013
).
7.
T.
Wang
,
J.
Luo
,
L.
Gao
,
P.
Xu
, and
Y.
Lai
,
Appl. Phys. Lett.
104
,
211904
(
2014
).
8.
Q.
Wei
,
Y.
Cheng
, and
X. J.
Liu
,
Appl. Phys. Lett.
102
,
174104
(
2013
).
9.
C. M.
Park
,
J. J.
Park
,
S. H.
Lee
,
Y. M.
Seo
,
C. K.
Kim
, and
S. H.
Lee
,
Phys. Rev. Lett.
107
,
194301
(
2011
).
10.
J. J.
Park
,
K. J. B.
Lee
,
O. B.
Wright
,
M. K.
Jung
, and
S. H.
Lee
,
Phys. Rev. Lett.
110
,
244302
(
2013
).
11.
F.
Bongard
,
H.
Lissek
, and
J. R.
Mosig
,
Phys. Rev. B
82
,
094306
(
2010
).
12.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N. H.
Chan
, and
P.
Sheng
,
Phys. Rev. Lett.
101
,
204301
(
2008
).
13.
L. Y.
Zheng
,
Y.
Wu
,
X.
Ni
,
Z. G.
Chen
,
M. H.
Lu
, and
Y. F.
Chen
,
Appl. Phys. Lett.
104
,
161904
(
2014
).
14.
R.
Graciá-Salgado
,
V. M.
García-Chocano
,
D.
Torrent
, and
J.
Sánchez-Dehesa
,
Phys. Rev. B
88
,
224305
(
2013
).
15.
Z.
Liang
and
J.
Li
,
Phys. Rev. Lett.
108
,
114301
(
2012
).
16.
F.
Liu
,
X.
Huang
, and
C. T.
Chan
,
Appl. Phys. Lett.
100
,
071911
(
2012
).
17.
R.
Fleury
and
A.
Alù
,
Phys. Rev. Lett.
111
,
055501
(
2013
).
18.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
,
Nat. Mater.
13
,
873
(
2014
).
19.
X. D.
Chen
,
T.
Grzegorczyk
,
B. I.
Wu
,
J.
Pacheco
, and
J.
Kong
,
Phys. Rev. E
70
,
016608
(
2004
).
20.
V.
Fokin
,
M.
Ambati
,
C.
Sun
, and
X.
Zhang
,
Phys. Rev. B
76
,
144302
(
2007
).
21.
D. R.
Smith
,
D. C.
Vier
,
T.
Koschny
, and
C. M.
Soukoulis
,
Phys. Rev. E
71
,
036617
(
2005
).
22.
Z.
Li
,
K.
Aydin
, and
E.
Ozbay
,
Phys. Rev. E
79
,
026610
(
2009
).
23.
A.
Andryieuski
,
R.
Malureanu
, and
A. V.
Lavrinenko
,
Phys. Rev. B
80
,
193101
(
2009
).
24.
X. C.
Xu
,
P.
Li
,
X. M.
Zhou
, and
G. K.
Hu
,
Europhys. Lett.
109
,
28001
(
2015
).
25.
M.
Yang
,
G.
Ma
,
Z.
Yang
, and
P.
Sheng
,
Phys. Rev. Lett.
110
,
134301
(
2013
).
26.
T.-T.
Wu
,
Y.-T.
Chen
,
J.-H.
Sun
,
S.-C. S.
Lin
, and
T. J.
Huang
,
Appl. Phys. Lett.
98
,
171911
(
2011
).
27.
T.-T.
Wu
,
Z.-G.
Huang
,
T.-C.
Tsai
, and
T.-C.
Wu
,
Appl. Phys. Lett.
93
,
111902
(
2008
).
You do not currently have access to this content.