At frequencies below 2 GHz, conventional microwave absorbers are limited in application by their thickness or narrow absorption bandwidth. In this paper, we propose and fabricate an ultra-thin broadband active frequency selective surface (AFSS) absorber with a stretching transformation (ST) pattern for use in the ultrahigh-frequency (UHF) band. This absorber is loaded with resistors and varactors to produce its tunability. To expand the tunable bandwidth, we applied the ST with various coefficients x and y to the unit cell pattern. With ST coefficients of x = y = 1, the tunability and strong absorption are concisely demonstrated, based on a discussion of impedance matching. On analyzing the patterns with various ST coefficients, we found that a small x/y effectively expands the tunable bandwidth. After this analysis, we fabricated an AFSS absorber with ST coefficients of x = 0.7 and y = 1. Its measured reflectivity covered a broad band of 0.7–1.9 GHz below −10 dB at bias voltages of 10–48 V. The total thickness of this absorber, 7.8 mm, was only ∼λ/54 of the lower limit frequency, ∼λ/29 of the center frequency, and ∼λ/20 of the higher limit frequency. Our measurements and simulated results indicate that this AFSS absorber can be thin and achieve a broad bandwidth simultaneously.

1.
B. A.
Munk
,
Frequency Selective Surfaces: Theory And Design
(
Wiley-Interscience
,
New York
,
2000
).
2.
R. L.
Fante
and
M. T.
McCormack
,
IEEE Trans. Antennas Propag.
36
,
1443
(
1988
).
3.
X. X.
Xu
,
J. J.
Jiang
,
S. W.
Bie
,
Q.
Chen
,
C. K.
Zhang
, and
L.
Miao
,
J. Electromagn. Waves Appl.
26
,
1215
(
2012
).
4.
N.
Landy
,
S.
Sajuyigbe
,
J.
Mock
,
D.
Smith
, and
W.
Padilla
,
Phys. Rev. Lett.
100
,
207402
(
2008
).
5.
N. I.
Landy
,
C. M.
Bingham
,
T.
Tyler
,
N.
Jokerst
,
D. R.
Smith
, and
W. J.
Padilla
,
Phys. Rev. B
79
,
12
(
2009
).
6.
H.
Tao
,
N. I.
Landy
,
C. M.
Bingham
,
X.
Zhang
,
R. D.
Averitt
, and
W. J.
Padilla
,
Opt. Express
16
,
7181
(
2008
).
7.
F.
Costa
,
S.
Genovesi
,
A.
Monorchio
, and
G.
Manara
,
IEEE Antennas Wireless Prop. Lett.
13
,
27
(
2014
).
8.
Q.
Chen
,
J.-J.
Jiang
,
X.-X.
Xu
,
L.
Zhang
,
L.
Miao
, and
S.-W.
Bie
, “
A thin and broadband tunable radar absorber using active frequency selective surface
,” in
IEEE Antennas and Propagation Society International Symposium (APSURSI)
(
2012
), p.
1
.
9.
B.
Sanz-Izquierdo
,
E. A.
Parker
, and
J. C.
Batchelor
,
IEEE Trans. Antennas Propag.
58
,
3761
(
2010
).
10.
P. S.
Taylor
,
E. A.
Parker
, and
J. C.
Batchelor
,
IEEE Trans. Antennas Propag.
59
,
3265
(
2011
).
11.
A.
Tennant
and
B.
Chambers
,
Smart Mater. Struct.
13
,
122
(
2004
).
12.
L.
Boccia
,
I.
Russo
,
G.
Amendola
, and
G.
Di Massa
,
Electron. Lett.
45
,
1213
(
2009
).
13.
F.
Costa
,
A.
Monorchio
, and
G. P.
Vastante
,
IEEE Antennas Wireless Propag. Lett.
10
,
11
(
2011
).
14.
C.
Mias
,
Electron. Lett.
39
,
1060
(
2003
).
15.
W.
Xu
and
S.
Sonkusale
,
Appl. Phys. Lett.
103
,
031902
(
2013
).
16.
P.
Kong
,
X.
Yu
,
Z.
Liu
,
K.
Zhou
,
Y.
He
,
L.
Miao
, and
J.
Jiang
,
Opt. Express
22
,
30217
(
2014
).
17.
A.
Tennant
and
B.
Chambers
,
IEEE Microwave Wireless Compon. Lett.
14
,
46
(
2004
).
18.
A.
Fallahi
,
A.
Yahaghi
,
H.
Benedickter
,
H.
Abiri
,
M.
Shahabadi
, and
C.
Hafner
,
IEEE Trans. Antennas Propag.
58
,
4051
(
2010
).
19.
M.
Olszewska-Placha
,
B.
Salski
,
D.
Janczak
,
P. R.
Bajurko
,
W.
Gwarek
, and
M.
Jakubowska
,
IEEE Trans. Antennas Propag.
63
,
565
(
2015
).
20.
R.
Panwar
,
S.
Puthucheri
,
V.
Agarwala
, and
D.
Singh
, “
Effect of particle size on radar wave absorption of fractal frequency selective surface loaded multilayered structures
,” in
IEEE International Microwave and RF Conference (IMaRC)
(
2014
), p.
186
.
21.
R.
Panwar
,
S.
Puthucheri
,
V.
Agarwala
, and
D.
Singh
,
IEEE Trans. Microwave Theory Techn.
63
,
2438
(
2015
).
22.
R.
Panwar
,
S.
Puthucheri
,
D.
Singh
, and
V.
Agarwala
,
IEEE Trans. Magn.
2015
,
1
.
23.
A. K.
Azad
,
A. J.
Taylor
,
E.
Smirnova
, and
J. F.
O'Hara
,
Appl. Phys. Lett.
92
,
011119
(
2008
).
24.
C.
Caloz
and
T.
Itoh
,
Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications
(
John Wiley & Sons
,
2005
).
25.
L.
Fu
,
H.
Schweizer
,
H.
Guo
,
N.
Liu
, and
H.
Giessen
,
Phys. Rev. B: Condens. Matter
78
,
1884
(
2008
).
26.
Q.-Y.
Wen
,
Y.-S.
Xie
,
H.-W.
Zhang
,
Q.-H.
Yang
,
Y.-X.
Li
, and
Y.-L.
Liu
,
Opt. Express
17
,
20256
(
2009
).
27.
D.
Singh
,
A.
Kumar
,
S.
Meena
,
V.
Agarwala
,
D.
Singh
,
A.
Kumar
,
S.
Meena
, and
V.
Agarwala
,
Prog. Electromagn. Res. B
78
,
1159
(
2012
).
28.
R.
Panwar
,
V.
Agarwala
, and
D.
Singh
,
Ceram. Int.
41
,
2923
(
2015
).
29.
R.
Panwar
,
S.
Puthucheri
,
V.
Agarwala
, and
D.
Singh
,
J. Electromagn. Waves Appl.
29
,
1238
(
2015
).
30.
L.
Liu
,
S.
Matitsine
, and
R. F. H. B.
Tang
,
Metamaterials
5
,
36
(
2011
).
You do not currently have access to this content.