In this work, a detailed analysis of the properties of a novel microdosimeter based on a synthetic single crystal diamond is reported. Focused ion microbeams were used to investigate the device spectropscopic properties as well as the induced radiation damage effects. A diamond based Schottky diode was fabricated by chemical vapor deposition with a very thin detecting region, about 400 nm thick (approximately 1.4 μm water equivalent thickness), corresponding to the typical size in microdosimetric measurements. A 200 × 200 μm2 square metallic contact was patterned on the diamond surface by standard photolithography to define the sensitive area. Experimental measurements were carried out at the Ruder Boškovic′ Institute microbeam facility using 4 MeV carbon and 5 MeV silicon ions. Ion beam induced charge maps were employed to characterize the microdosimeter response in terms of its charge collection properties. A stable response with no evidence of polarization or memory effects was observed up to the maximum investigated ion beam flux of about 1.7 × 109 ions·cm−2·s−1. A homogeneity of the response about 6% was found over the sensitive region with a well-defined confinement of the response within the active area. Tests of the radiation damage effect were performed by selectively irradiating small areas of the device with different ion fluences, up to about 1012 ions/cm2. An exponential decrease of the charge collection efficiency was observed with a characteristic decay constant of about 4.8 MGy and 1 MGy for C and Si ions, respectively. The experimental data were analyzed by means of GEANT4 Monte Carlo simulations. A direct correlation between the diamond damaging effect and the Non Ionizing Energy Loss (NIEL) fraction was found. In particular, an exponential decay of the charge collection efficiency with an exponential decay as a function of NIEL is observed, with a characteristic constant of about 9.3 kGy-NIEL for both carbon and silicon ions.

1.
R. R.
Wilson
,
Radiobiology
47
,
487
491
(
1946
).
2.
J. S.
Loeffler
and
M.
Durante
,
Nat. Rev. Clin. Oncol.
10
,
411
424
(
2013
).
3.
International Atomic Energy Agency and International Commission on Radiation Units and Measurements, Relative Biological Effectiveness in Ion Beam Therapy, Technical Reports Series No. 461, Jointly sponsored by the IAEA and ICRU, Vienna (2008), available at: http://www-pub.iaea.org/MTCD/publications/PDF/trs461_web.pdf.
4.
H. H.
Rossi
,
Radiat. Res.
10
,
522
531
(
1959
).
5.
L.
De Nardo
,
V.
Cesari
,
N.
Iborra
,
V.
Conte
,
P.
Colautti
,
J.
Herault
,
G.
Tornielli
, and
P.
Chauvel
,
Phys. Med.
XX
(
2
),
71
77
(
2004
).
6.
International Commission on Radiation Units and Measurements, Microdosimetry, ICRU Report 36, Woodmont Avenue, Bethesda, Maryland, 20814, USA,
1983
.
7.
G.
Magrin
and
R.
Mayer
,
Mod. Phys. Lett. A
30
,
1540027
(
2015
).
8.
S.
Rollet
,
M.
Angelone
,
G.
Magrin
,
M.
Marinelli
,
E.
Milani
,
M.
Pillon
,
G.
Prestopino
,
C.
Verona
, and
G.
Verona-Rinati
,
IEEE Trans. Nucl. Sci.
59
,
2409
2415
(
2012
).
9.
S.
Almaviva
,
M.
Marinelli
,
E.
Milani
,
G.
Prestopino
,
A.
Tucciarone
,
C.
Verona
,
G.
Verona-Rinati
,
M.
Angelone
,
M.
Pillon
,
I.
Dolbnya
,
K.
Sawhney
, and
N.
Tartoni
,
J. Appl. Phys.
107
,
014511
(
2010
).
10.
M.
Jakšić
,
I. B.
Radović
,
M.
Bogovac
,
V.
Desnica
,
S.
Fazinić
,
M.
Karlušić
,
Z.
Medunić
,
H.
Muto
,
Ž.
Pastuović
,
Z.
Siketić
,
N.
Skukan
, and
T.
Tadić
,
Nucl. Instrum. Methods Phys. Res. B
260
,
114
118
(
2007
).
11.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
,
Nucl. Instrum. Methods Phys. Res. B
268
,
1818
(
2010
).
12.
S.
Almaviva
,
M.
Marinelli
,
E.
Milani
,
G.
Prestopino
,
A.
Tucciarone
,
C.
Verona
,
G.
Verona-Rinati
,
M.
Angelone
,
D.
Lattanzi
,
M.
Pillon
,
R. M.
Montereali
, and
M. A.
Vincenti
,
J. Appl. Phys.
103
,
054501
(
2008
).
13.
T.
Tadić
and
M.
Jakšic
,
Nucl. Instrum. Methods Phys. Res. B
267
,
2028
2031
(
2009
).
14.
J. A.
Davis
,
K
.
Ganesan
,
A. D. C.
Alves
,
D. A.
Prokopovich
,
S.
Guatelli
,
M.
Petasecca
,
M. L. F.
Lerch
,
D. N.
Jamieson
, and
A. B.
Rosenfeld
,
IEEE Trans. Nucl. Sci.
61
,
3479
3484
(
2014
).
15.
D. S.
Bale
and
C.
Szeles
,
Phys. Rev. B
77
,
035205
(
2008
).
16.
C.
Manfredotti
,
A.
Lo Giudice
,
E.
Vittone
,
F.
Fizzotti
,
Y.
Garino
, and
E.
Pace
,
Diamond Relat. Mater.
15
,
1467
1471
(
2006
).
17.
V.
Grilj
,
N.
Skukan
,
M.
Jakšic′
,
W.
Kada
, and
T.
Kamiya
,
Nucl. Instrum. Methods Phys. Res. B
306
,
191
194
(
2013
).
18.
Y.
Sato
,
T.
Shimaoka
,
J. H.
Kaneko
,
H.
Murakami
,
M.
Isobe
,
M.
Osakabe
,
M.
Tsubota
,
K.
Ochiai
,
A.
Chayahara
,
H.
Umezawa
, and
S.
Shikata
,
Nucl. Instrum. Methods Phys. Res. A
784
,
147
(
2015
).
19.
S.
Agostinelli
 et al,
Nucl. Instrum. Methods Phys. Res. A
506
,
250
303
(
2003
).
20.
J.
Allison
 et al,
IEEE Trans. Nucl. Sci.
53
,
270
278
(
2006
).
21.
I.
Zamboni
,
Ž.
Pastuović
, and
M.
Jakšić
,
Diamond Relat. Mater.
31
,
65
71
(
2013
).
22.
J.
Koike
,
D. M.
Parkin
, and
T. E.
Mitchell
,
Appl. Phys. Lett.
60
,
1450
(
1992
).
23.
M.
Pillon
,
M.
Angelone
,
G.
Aielli
,
S.
Almaviva
,
M.
Marinelli
,
E.
Milani
,
G.
Prestopino
,
A.
Tucciarone
,
C.
Verona
, and
G.
Verona-Rinati
,
J. Appl. Phys.
104
,
054513
(
2008
).
24.
A.
Allisy
 et al, “
Stopping powers and ranges for protons and alpha particles
,”
ICRU Report 49
(
1993
).
You do not currently have access to this content.