Three amorphous disaccharides (sucrose, trehalose, and lactulose) and their mixtures were studied in order to evaluate their ability to absorb a high frequency (>1 MHz) electromagnetic wave. The materials were characterized by a dielectric loss tangent. It was found out that the highest tan(δ) value is observed in pure amorphous sucrose (tan(δ) = 0.17 at f = 1 MHz at T = 293 K). Moreover, the best Tg/tan(δ) ratio is observed in binary mixtures of sucrose and trehalose. A high glass transition temperature is advantageous as it increases operational temperatures of the material. The high tangent delta in microwave frequencies of sugars is connected with the mobility of sugar groups (possibly –CH2OH). The energy of the electromagnetic wave is converted into rotational movements of side groups and in consequence it is dissipated in the form of heat. It was proven that the polar low molecular glasses such as sugars may form dielectric components of composite microwave absorbers.

1.
D. C.
Schleher
,
Electronic Warfare in the Information Age
(
Artech House
,
London
,
1999
).
2.
A.
Kovetz
,
Electromagnetic Theory
(
Oxford
,
New York
,
2000
).
3.
E. F.
Knott
,
J. F.
Shaeffer
, and
M. T.
Tuley
,
Radar Cross Section
, 2nd ed. (
Artech House
,
Norwood
,
1993
).
4.
M.
Sucher
and
J.
Fox
,
Handbook of the Microwave Measurements
, 3rd ed. (
John Wiley and Sons
,
New York
,
1963
).
5.
W. B.
Westphal
and
A.
Sils
, “
Dielectric constant and loss data
,”
Technical Report AFML-TR-72-39, Laboratory for Insulation Research, Massachusetts Institute of Technology
,
1972
.
6.
W. B.
Westphal
, “
Dielectric constant and loss data part II
,”
Technical Report AFML-TR-74-250, Laboratory for Insulation Research, Massachusetts Institute of Technology
,
1975
.
7.
See http://www.eccosorb.com/Collateral/Documents/English-US/dielectric-chart.pdf for information about loss tangent parameter in different types of materials.
8.
J. F.
Willart
,
A.
De Gusseme
,
S.
Hemon
,
M.
Descamps
,
F.
Leveiller
, and
A.
Rameau
,
J. Phys. Chem. B
106
,
3365
(
2002
).
9.
K.
Kaminski
,
E.
Kaminska
,
P.
Wlodarczyk
,
S.
Pawlus
,
D.
Kimla
,
A.
Kasprzycka
,
M.
Paluch
,
J.
Ziolo
,
W.
Szeja
, and
K. L.
Ngai
,
J. Phys. Chem. B
112
,
12816
(
2008
).
10.
K.
Kaminski
,
P.
Wlodarczyk
,
K.
Adrjanowicz
,
E.
Kaminska
,
Z.
Wojnarowska
, and
M.
Paluch
,
J. Phys. Chem. B
114
,
11272
(
2010
).
11.
S.
Havriliak
and
S.
Negami
,
Polymer
8
,
161
(
1967
).
12.
K.
Kaminski
,
E.
Kaminska
,
S.
Hensel-Bielowka
,
E.
Chelmecka
,
M.
Paluch
,
J.
Ziolo
,
P.
Wlodarczyk
, and
K. L.
Ngai
,
J. Phys. Chem. B
112
,
7662
(
2008
).
13.
P.
Saini
,
V.
Choudhary
,
B. P.
Singh
,
R. B.
Mathur
, and
S. K.
Dhawan
,
Mater. Chem. Phys.
113
,
919
(
2009
).
14.
P.
Chandrasekhar
,
Conducting Polymers, Fundamentals and Applications: A Practical Approach
(
Kluwer Academic Publishers
,
London
,
1999
), p.
330
.
15.
R.
Uyar
,
T.
Faye Bedane
,
F.
Erdogdu
,
T.
Koray Palazoglu
,
K. W.
Farag
, and
F.
Marra
,
J. Food Eng.
146
,
163
(
2015
).
16.
Radio-Frequency Heating in Food Processing: Principles and Applications
, edited by
G. B.
Awuah
,
H. S.
Ramaswamy
, and
J.
Tang
(
CRC Press
,
2014
).
You do not currently have access to this content.