A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

1.
S.
Datta
,
Classical Wave Propagation in Periodic and Random Media
(
Iowa State University
,
1994
).
2.
E.
Yablonovitch
, “
Inhibited spontaneous emission in solid-state physics and electronics
,”
Phys. Rev. Lett.
58
,
2059
(
1987
).
3.
S.
John
, “
Strong localization of photons in certain disordered dielectric superlattices
,”
Phys. Rev. Lett.
58
,
2486
2489
(
1987
).
4.
R.
Zengerle
, “
Light propagation in singly and doubly periodic planar waveguides
,”
J. Mod. Opt.
34
,
1589
1617
(
1987
).
5.
T. F.
Krauss
,
R. M. D. L.
Rue
, and
S.
Brand
, “
Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths
,”
Nature
383
,
699
702
(
1996
).
6.
B.
Gralak
,
S.
Enoch
, and
G.
Tayeb
, “
Anomalous refractive properties of photonic crystals
,”
J. Opt. Soc. Am. A
17
,
1012
1020
(
2000
).
7.
M.
Notomi
, “
Negative refraction in photonic crystals
,”
Opt. Quantum Electron.
34
,
133
143
(
2002
).
8.
R. V.
Craster
and
S.
Guenneau
,
Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking
(
Springer
,
Berlin
,
2013
), Vol. 166.
9.
E.
Lheurette
,
Metamaterials and Wave Control
(
Wiley-ISTE
,
London
,
2013
).
10.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y.
Zhu
,
Z.
Yang
,
C.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
(
2000
).
11.
C.
Poulton
,
A.
Movchan
,
R.
McPhedran
,
N.
Nicorovici
, and
Y.
Antipov
, “
Eigenvalue problems for doubly periodic elastic structures and phononic band gaps
,”
Proc. R. Soc. London, Ser. A
456
,
2543
2559
(
2000
).
12.
S.
Yang
,
J.
Page
,
Z.
Liu
,
M.
Cowan
,
C.
Chan
, and
P.
Sheng
, “
Focusing of sound in a 3d phononic crystal
,”
Phys. Rev. Lett.
93
,
024301
(
2004
).
13.
L.
Feng
,
X.-P.
Liu
,
Y.-B.
Chen
,
Z.-P.
Huang
,
Y.-W.
Mao
,
Y.-F.
Chen
,
J.
Zi
, and
Y.-Y.
Zhu
, “
Negative refraction of acoustic waves in two-dimensional sonic crystals
,”
Phys. Rev. B
72
,
033108
(
2005
).
14.
X.
Zhang
and
Z.
Liu
, “
Negative refraction of acoustic waves in two-dimensional phononic crystals
,”
Appl. Phys. Lett.
85
,
341
343
(
2004
).
15.
X.
Hu
,
Y.
Shen
,
X.
Liu
,
R.
Fu
, and
J.
Zi
, “
Superlensing effect in liquid surface waves
,”
Phys. Rev. E
69
,
030201
(
2004
).
16.
M.
Farhat
,
S.
Guenneau
,
S.
Enoch
,
G.
Tayeb
,
A. B.
Movchan
, and
N. V.
Movchan
, “
Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders
,”
Phys. Rev. E
77
,
46308
(
2008
).
17.
M.
Farhat
,
S.
Guenneau
,
S.
Enoch
, and
A. B.
Movchan
, “
All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2d phononic crystals
,”
J. Comput. Appl. Math.
234
,
2011
2019
(
2010
).
18.
J. H.
Page
 et al., “
Phononic crystals
,”
Phys. Status Solidi B
241
,
3454
3462
(
2004
).
19.
Y.
Penneca
,
J. O.
Vasseura
,
B.
Djafari-Rouhania
,
L.
Dobrzynskia
, and
P. A.
Deymier
, “
Two-dimensional phononic crystals: Examples and applications
,”
Surf. Sci. Rep.
65
,
229
291
(
2010
).
20.
X.
Niu
,
L.
Liu
,
W.
Wen
, and
P.
Sheng
, “
Hybrid approach to high-frequency microfluidic mixing
,”
Phys. Rev. Lett.
97
,
044501
(
2006
).
21.
M.
Farhat
,
S.
Guenneau
,
S.
Enoch
, and
A. B.
Movchan
, “
Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators
,”
Phys. Rev. E
80
,
046309
(
2009
).
22.
N.
Fang
,
D.
Xi
,
J.
Xu
,
M.
Ambati
,
W.
Srituravanich
,
C.
Sun
, and
X.
Zhang
, “
Ultrasonic metamaterials with negative modulus
,”
Nat. Mater.
5
,
452
456
(
2006
).
23.
J.
Li
and
C.
Chan
, “
Double-negative acoustic metamaterial
,”
Phys. Rev. E
70
,
055602
(
2004
).
24.
Y.
Ding
,
Z.
Liu
,
C.
Qiu
, and
J.
Shi
, “
Metamaterial with simultaneously negative bulk modulus and mass density
,”
Phys. Rev. Lett.
99
,
093904
(
2007
).
25.
S.
Guenneau
,
A.
Movchan
,
G.
Pétursson
, and
S. A.
Ramakrishna
, “
Acoustic metamaterials for sound focusing and confinement
,”
New J. Phys.
9
,
399
(
2007
).
26.
Z.
Liang
,
T.
Feng
,
S.
Lok
,
F.
Liu
,
K. B.
Ng
,
C. H.
Chan
,
J.
Wang
,
S.
Han
,
S.
Lee
, and
J.
Li
, “
Space-coiling metamaterials with double negativity and conical dispersion
,”
Sci. Rep.
3
,
01614
(
2013
).
27.
G.
Dupont
,
M.
Farhat
,
A.
Diatta
,
S.
Guenneau
, and
S.
Enoch
, “
Numerical analysis of three-dimensional acoustic cloaks and carpets
,”
Wave Motion
48
,
483
496
(
2011
).
28.
M. D.
Guild
,
M. R.
Haberman
, and
A.
Alù
, “
Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves
,”
Wave Motion
48
,
468
482
(
2011
).
29.
P.-Y.
Chen
,
M.
Farhat
,
S.
Guenneau
,
S.
Enoch
, and
A.
Alù
, “
Acoustic scattering cancellation via ultrathin pseudo-surface
,”
Appl. Phys. Lett.
99
,
191913
(
2011
).
30.
A. N.
Norris
, “
Acoustic cloaking theory
,”
Proc. R. Soc. A-Math. Phys. Eng. Sci.
464
,
2411
2434
(
2008
).
31.
M.
Farhat
,
S.
Guenneau
, and
S.
Enoch
, “
Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates
,”
Phys. Rev. B
85
,
020301
(
2012
).
32.
T.
Bückmann
,
M.
Thiel
,
M.
Kadic
,
R.
Schittny
, and
M.
Wegener
, “
An elasto-mechanical unfeelability cloak made of pentamode metamaterials
,”
Nat. Commun.
15
,
4130
(
2014
).
33.
S. A.
Cummer
and
D.
Schurig
, “
One path to acoustic cloaking
,”
New J. Phys.
9
,
45
(
2007
).
34.
M.
Fleischhauer
,
A.
Imamoglu
, and
J. P.
Marangos
, “
Electromagnetically induced transparency: Optics in coherent media
,”
Rev. Mod. Phys.
77
,
633
(
2005
).
35.
N.
Liu
,
L.
Langguth
,
T.
Weiss
,
J.
Kästel
,
M.
Fleischhauer
,
T.
Pfau
, and
H.
Giessen
, “
Plasmonic analogue of electromagnetically induced transparency at the drude damping limit
,”
Nat. Mater.
8
,
758
762
(
2009
).
36.
B.
Luk'yanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
, “
The fano resonance in plasmonic nanostructures and metamaterials
,”
Nat. Mater.
9
,
707
715
(
2010
).
37.
C.
Wu
,
A. B.
Khscianikaev
,
R.
Adato
,
N.
Arju
,
A. A.
Yanik
,
H.
Altug
, and
G.
Shvets
, “
Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers
,”
Nat. Mater.
11
,
69
75
(
2011
).
38.
F.
Liu
,
M.
Ke
,
A.
Zhang
,
W.
Wen
,
J.
Shi
,
Z.
Liu
, and
P.
Sheng
, “
Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods
,”
Phys. Rev. E
82
,
026601
(
2010
).
39.
A.
Santillán
and
S. I.
Bozhevolnyi
, “
Acoustic transparency and slow sound using detuned acoustic resonators
,”
Phys. Rev. B
84
,
064304
(
2011
).
40.
U.
Fano
, “
Effects of configuration interaction on intensities and phase shifts
,”
Phys. Rev.
124
,
1866
(
1961
).
41.
C.
Ott
,
A.
Kaldun
,
P.
Raith
,
K.
Meyer
,
M.
Laux
,
J.
Evers
,
C. H.
Keitel
,
C. H.
Greene
, and
T.
Pfeifer
, “
Lorentz meets fano in spectral line shapes: A universal phase and its laser control
,”
Science
340
,
716
720
(
2013
).
42.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
(
2010
).
43.
M.
Rahmani
,
B.
Luk'yanchuk
, and
M.
Hong
, “
Fano resonance in novel plasmonic nanostructures
,”
Laser Photon. Rev.
7
,
329
349
(
2013
).
44.
M.
Amin
,
M.
Farhat
, and
H.
Bağcı
, “
A nonlinear plasmonic resonator for three-state all-optical switching
,”
Opt. Express
22
,
6966
6975
(
2014
).
45.
L. E.
Kinsler
,
A. R.
Frey
,
A. B.
Coppens
, and
J. V.
Sanders
,
Fundamentals of Acoustics
(
Wiley
,
New York
,
1999
), Vol. 1.
46.
See http://www.comsol.com for Comsol multiphysics (accessed September 10,
2014
).
You do not currently have access to this content.