A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.
References
1.
S.
Datta
, Classical Wave Propagation in Periodic and Random Media
(Iowa State University
, 1994
).2.
E.
Yablonovitch
, “Inhibited spontaneous emission in solid-state physics and electronics
,” Phys. Rev. Lett.
58
, 2059
(1987
).3.
S.
John
, “Strong localization of photons in certain disordered dielectric superlattices
,” Phys. Rev. Lett.
58
, 2486
–2489
(1987
).4.
R.
Zengerle
, “Light propagation in singly and doubly periodic planar waveguides
,” J. Mod. Opt.
34
, 1589
–1617
(1987
).5.
T. F.
Krauss
, R. M. D. L.
Rue
, and S.
Brand
, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths
,” Nature
383
, 699
–702
(1996
).6.
B.
Gralak
, S.
Enoch
, and G.
Tayeb
, “Anomalous refractive properties of photonic crystals
,” J. Opt. Soc. Am. A
17
, 1012
–1020
(2000
).7.
M.
Notomi
, “Negative refraction in photonic crystals
,” Opt. Quantum Electron.
34
, 133
–143
(2002
).8.
R. V.
Craster
and S.
Guenneau
, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking
(Springer
, Berlin
, 2013
), Vol. 166.9.
E.
Lheurette
, Metamaterials and Wave Control
(Wiley-ISTE
, London
, 2013
).10.
Z.
Liu
, X.
Zhang
, Y.
Mao
, Y.
Zhu
, Z.
Yang
, C.
Chan
, and P.
Sheng
, “Locally resonant sonic materials
,” Science
289
, 1734
–1736
(2000
).11.
C.
Poulton
, A.
Movchan
, R.
McPhedran
, N.
Nicorovici
, and Y.
Antipov
, “Eigenvalue problems for doubly periodic elastic structures and phononic band gaps
,” Proc. R. Soc. London, Ser. A
456
, 2543
–2559
(2000
).12.
S.
Yang
, J.
Page
, Z.
Liu
, M.
Cowan
, C.
Chan
, and P.
Sheng
, “Focusing of sound in a 3d phononic crystal
,” Phys. Rev. Lett.
93
, 024301
(2004
).13.
L.
Feng
, X.-P.
Liu
, Y.-B.
Chen
, Z.-P.
Huang
, Y.-W.
Mao
, Y.-F.
Chen
, J.
Zi
, and Y.-Y.
Zhu
, “Negative refraction of acoustic waves in two-dimensional sonic crystals
,” Phys. Rev. B
72
, 033108
(2005
).14.
X.
Zhang
and Z.
Liu
, “Negative refraction of acoustic waves in two-dimensional phononic crystals
,” Appl. Phys. Lett.
85
, 341
–343
(2004
).15.
X.
Hu
, Y.
Shen
, X.
Liu
, R.
Fu
, and J.
Zi
, “Superlensing effect in liquid surface waves
,” Phys. Rev. E
69
, 030201
(2004
).16.
M.
Farhat
, S.
Guenneau
, S.
Enoch
, G.
Tayeb
, A. B.
Movchan
, and N. V.
Movchan
, “Analytical and numerical analysis of lensing effect for linear surface water waves through a square array of nearly touching rigid square cylinders
,” Phys. Rev. E
77
, 46308
(2008
).17.
M.
Farhat
, S.
Guenneau
, S.
Enoch
, and A. B.
Movchan
, “All-angle-negative-refraction and ultra-refraction for liquid surface waves in 2d phononic crystals
,” J. Comput. Appl. Math.
234
, 2011
–2019
(2010
).18.
J. H.
Page
et al., “Phononic crystals
,” Phys. Status Solidi B
241
, 3454
–3462
(2004
).19.
Y.
Penneca
, J. O.
Vasseura
, B.
Djafari-Rouhania
, L.
Dobrzynskia
, and P. A.
Deymier
, “Two-dimensional phononic crystals: Examples and applications
,” Surf. Sci. Rep.
65
, 229
–291
(2010
).20.
X.
Niu
, L.
Liu
, W.
Wen
, and P.
Sheng
, “Hybrid approach to high-frequency microfluidic mixing
,” Phys. Rev. Lett.
97
, 044501
(2006
).21.
M.
Farhat
, S.
Guenneau
, S.
Enoch
, and A. B.
Movchan
, “Negative refraction, surface modes, and superlensing effect via homogenization near resonances for a finite array of split-ring resonators
,” Phys. Rev. E
80
, 046309
(2009
).22.
N.
Fang
, D.
Xi
, J.
Xu
, M.
Ambati
, W.
Srituravanich
, C.
Sun
, and X.
Zhang
, “Ultrasonic metamaterials with negative modulus
,” Nat. Mater.
5
, 452
–456
(2006
).23.
J.
Li
and C.
Chan
, “Double-negative acoustic metamaterial
,” Phys. Rev. E
70
, 055602
(2004
).24.
Y.
Ding
, Z.
Liu
, C.
Qiu
, and J.
Shi
, “Metamaterial with simultaneously negative bulk modulus and mass density
,” Phys. Rev. Lett.
99
, 093904
(2007
).25.
S.
Guenneau
, A.
Movchan
, G.
Pétursson
, and S. A.
Ramakrishna
, “Acoustic metamaterials for sound focusing and confinement
,” New J. Phys.
9
, 399
(2007
).26.
Z.
Liang
, T.
Feng
, S.
Lok
, F.
Liu
, K. B.
Ng
, C. H.
Chan
, J.
Wang
, S.
Han
, S.
Lee
, and J.
Li
, “Space-coiling metamaterials with double negativity and conical dispersion
,” Sci. Rep.
3
, 01614
(2013
).27.
G.
Dupont
, M.
Farhat
, A.
Diatta
, S.
Guenneau
, and S.
Enoch
, “Numerical analysis of three-dimensional acoustic cloaks and carpets
,” Wave Motion
48
, 483
–496
(2011
).28.
M. D.
Guild
, M. R.
Haberman
, and A.
Alù
, “Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves
,” Wave Motion
48
, 468
–482
(2011
).29.
P.-Y.
Chen
, M.
Farhat
, S.
Guenneau
, S.
Enoch
, and A.
Alù
, “Acoustic scattering cancellation via ultrathin pseudo-surface
,” Appl. Phys. Lett.
99
, 191913
(2011
).30.
A. N.
Norris
, “Acoustic cloaking theory
,” Proc. R. Soc. A-Math. Phys. Eng. Sci.
464
, 2411
–2434
(2008
).31.
M.
Farhat
, S.
Guenneau
, and S.
Enoch
, “Broadband cloaking of bending waves via homogenization of multiply perforated radially symmetric and isotropic thin elastic plates
,” Phys. Rev. B
85
, 020301
(2012
).32.
T.
Bückmann
, M.
Thiel
, M.
Kadic
, R.
Schittny
, and M.
Wegener
, “An elasto-mechanical unfeelability cloak made of pentamode metamaterials
,” Nat. Commun.
15
, 4130
(2014
).33.
S. A.
Cummer
and D.
Schurig
, “One path to acoustic cloaking
,” New J. Phys.
9
, 45
(2007
).34.
M.
Fleischhauer
, A.
Imamoglu
, and J. P.
Marangos
, “Electromagnetically induced transparency: Optics in coherent media
,” Rev. Mod. Phys.
77
, 633
(2005
).35.
N.
Liu
, L.
Langguth
, T.
Weiss
, J.
Kästel
, M.
Fleischhauer
, T.
Pfau
, and H.
Giessen
, “Plasmonic analogue of electromagnetically induced transparency at the drude damping limit
,” Nat. Mater.
8
, 758
–762
(2009
).36.
B.
Luk'yanchuk
, N. I.
Zheludev
, S. A.
Maier
, N. J.
Halas
, P.
Nordlander
, H.
Giessen
, and C. T.
Chong
, “The fano resonance in plasmonic nanostructures and metamaterials
,” Nat. Mater.
9
, 707
–715
(2010
).37.
C.
Wu
, A. B.
Khscianikaev
, R.
Adato
, N.
Arju
, A. A.
Yanik
, H.
Altug
, and G.
Shvets
, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers
,” Nat. Mater.
11
, 69
–75
(2011
).38.
F.
Liu
, M.
Ke
, A.
Zhang
, W.
Wen
, J.
Shi
, Z.
Liu
, and P.
Sheng
, “Acoustic analog of electromagnetically induced transparency in periodic arrays of square rods
,” Phys. Rev. E
82
, 026601
(2010
).39.
A.
Santillán
and S. I.
Bozhevolnyi
, “Acoustic transparency and slow sound using detuned acoustic resonators
,” Phys. Rev. B
84
, 064304
(2011
).40.
U.
Fano
, “Effects of configuration interaction on intensities and phase shifts
,” Phys. Rev.
124
, 1866
(1961
).41.
C.
Ott
, A.
Kaldun
, P.
Raith
, K.
Meyer
, M.
Laux
, J.
Evers
, C. H.
Keitel
, C. H.
Greene
, and T.
Pfeifer
, “Lorentz meets fano in spectral line shapes: A universal phase and its laser control
,” Science
340
, 716
–720
(2013
).42.
A. E.
Miroshnichenko
, S.
Flach
, and Y. S.
Kivshar
, “Fano resonances in nanoscale structures
,” Rev. Mod. Phys.
82
, 2257
(2010
).43.
M.
Rahmani
, B.
Luk'yanchuk
, and M.
Hong
, “Fano resonance in novel plasmonic nanostructures
,” Laser Photon. Rev.
7
, 329
–349
(2013
).44.
M.
Amin
, M.
Farhat
, and H.
Bağcı
, “A nonlinear plasmonic resonator for three-state all-optical switching
,” Opt. Express
22
, 6966
–6975
(2014
).45.
L. E.
Kinsler
, A. R.
Frey
, A. B.
Coppens
, and J. V.
Sanders
, Fundamentals of Acoustics
(Wiley
, New York
, 1999
), Vol. 1.46.
See http://www.comsol.com for Comsol multiphysics (accessed September 10,
2014
).© 2015 AIP Publishing LLC.
2015
AIP Publishing LLC
You do not currently have access to this content.