A new compact modeling approach is presented which describes the full current-voltage (I-V) characteristic of high-performance (aggressively scaled-down) tunneling field-effect-transistors (TFETs) based on homojunction direct-bandgap semiconductors. The model is based on an analytic description of two key features, which capture the main physical phenomena related to TFETs: (1) the potential profile from source to channel and (2) the elliptic curvature of the complex bands in the bandgap region. It is proposed to use 1D Poisson's equations in the source and the channel to describe the potential profile in homojunction TFETs. This allows to quantify the impact of source/drain doping on device performance, an aspect usually ignored in TFET modeling but highly relevant in ultra-scaled devices. The compact model is validated by comparison with state-of-the-art quantum transport simulations using a 3D full band atomistic approach based on non-equilibrium Green's functions. It is shown that the model reproduces with good accuracy the data obtained from the simulations in all regions of operation: the on/off states and the n/p branches of conduction. This approach allows calculation of energy-dependent band-to-band tunneling currents in TFETs, a feature that allows gaining deep insights into the underlying device physics. The simplicity and accuracy of the approach provide a powerful tool to explore in a quantitatively manner how a wide variety of parameters (material-, size-, and/or geometry-dependent) impact the TFET performance under any bias conditions. The proposed model presents thus a practical complement to computationally expensive simulations such as the 3D NEGF approach.

1.
A. M.
Ionescu
and
H.
Riel
,
Nature
479
,
329
(
2011
).
2.
J.
Appenzeller
,
J.
Knoch
,
M. T.
Bjork
,
H.
Riel
,
H.
Schmid
, and
W.
Riess
,
IEEE Trans. Electron Devices
55
,
2827
(
2008
).
3.
J.
Knoch
,
S.
Mantl
, and
J.
Appenzeller
,
Solid State Electron.
51
,
572
(
2007
).
4.
J.
Appenzeller
,
Y.-M.
Lin
,
J.
Knoch
, and
P.
Avouris
,
Phys. Rev. Lett.
93
,
196805
(
2004
).
5.
J.
Knoch
and
J.
Appenzeller
, in
63rd Device Research Conference Digest 2005, DRC'05
(
IEEE
,
2005
), pp.
153
156
.
6.
Q.
Zhang
,
W.
Zhao
, and
A.
Seabaugh
,
IEEE Electron Device Lett.
27
,
297
(
2006
).
7.
H.
Ilatikhameneh
,
Y.
Tan
,
B.
Novakovic
,
G.
Klimeck
,
R.
Rahman
, and
J.
Appenzeller
,
IEEE J. Exploratory Solid-State Computational Devices and Circuits
1
,
12
18
(
2015
).
8.
M.
Luisier
and
G.
Klimeck
,
J. Appl. Phys.
107
,
084507
(
2010
).
9.
M. A.
Khayer
and
R. K.
Lake
,
Appl. Phys. Lett.
95
,
073504
(
2009
).
10.
M.
Graef
,
T.
Holtij
,
F.
Hain
,
A.
Kloes
, and
B.
Iñiguez
, in
Mixed Design of Integrated Circuits and Systems (MIXDES), Proceedings of the 20th International Conference
(
IEEE
,
2013
), pp.
81
85
.
11.
Q.
Zhang
,
Y.
Lu
,
C. A.
Richter
,
D.
Jena
, and
A.
Seabaugh
,
IEEE Trans. Electron Devices
61
,
2719
(
2014
).
12.
A. C.
Seabaugh
and
Q.
Zhang
,
Proc. IEEE
98
,
2095
(
2010
).
13.
R. K.
Ghosh
and
S.
Mahapatra
,
IEEE J. Electron Devices Soc.
1
,
175
(
2013
).
14.
R.-H.
Yan
,
A.
Ourmazd
, and
K. F.
Lee
,
IEEE Trans. Electron Devices
39
,
1704
(
1992
).
15.
C. P.
Auth
and
J. D.
Plummer
,
IEEE Electron Device Lett.
18
,
74
(
1997
).
16.
H.
Ilatikhameneh
,
G.
Klimeck
,
J.
Appenzeller
, and
R.
Rahman
, “
Scaling theory of electrically doped 2D transistors
,”
IEEE Electron Device Lett.
36
,
726
(
2015
).
17.
T.
Dutta
,
Q.
Rafhay
,
G.
Pananakakis
, and
G.
Ghibaudo
, in
14th International Conference on Ultimate Integration on Silicon
(
IEEE
,
2013
), pp.
69
72
.
18.
B.
Yu
,
L.
Wang
,
Y.
Yuan
,
P. M.
Asbeck
, and
Y.
Taur
,
IEEE Trans. Electron Devices
55
,
2846
(
2008
).
19.
R.
Kim
and
M.
Lundstrom
, “
Notes on Fermi-Dirac integrals
,” e-print arXiv:0811.0116 (
2008
).
20.
J. T.
Smith
,
C.
Sandow
,
S.
Das
,
R. A.
Minamisawa
,
S.
Mantl
, and
J.
Appenzeller
,
IEEE Trans. Electron Devices
58
,
1822
(
2011
).
21.
X.-W.
Jiang
and
S.-S.
Li
,
Appl. Phys. Lett.
104
,
193510
(
2014
).
22.
A. S.
Verhulst
,
B.
Sorée
,
D.
Leonelli
,
W. G.
Vandenberghe
, and
G.
Groeseneken
,
J. Appl. Phys.
107
,
024518
(
2010
).
23.
D.
Jena
,
Proc. IEEE
101
,
1585
1602
(
2013
).
24.
N.
Ma
and
D.
Jena
,
Appl. Phys. Lett.
102
,
132102
(
2013
).
25.
D.
Sarkar
,
M.
Krall
, and
K.
Banerjee
,
Appl. Phys. Lett.
97
,
263109
(
2010
).
26.
S. O.
Koswatta
,
S. J.
Koester
, and
W.
Haensch
,
IEEE Trans. Electron Devices
57
,
3222
(
2010
).
27.
M.
Luisier
and
G.
Klimeck
,
IEEE Int. Electron Devices Meet.
2009
,
1
4
(
2009
).
28.
J.
Knoch
and
J.
Appenzeller
,
IEEE Electron Device Lett.
31
,
305
(
2010
).
29.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
1995
).
30.
R.
Lake
and
S.
Datta
,
Phys. Rev. B
45
,
6670
(
1992
).
31.
S.
Steiger
,
M.
Povolotskyi
,
H.-H.
Park
,
T.
Kubis
, and
G.
Klimeck
,
IEEE Trans. Nanotechnol.
10
,
1464
(
2011
).
32.
J. E.
Fonseca
,
T.
Kubis
,
M.
Povolotskyi
,
B.
Novakovic
,
A.
Ajoy
,
G.
Hegde
,
H.
Ilatikhameneh
,
Z.
Jiang
,
P.
Sengupta
,
Y.
Tan
, and
G.
Klimeck
,
J. Comput. Electron.
12
,
592
(
2013
).
33.
T. B.
Boykin
,
G.
Klimeck
,
R. C.
Bowen
, and
F.
Oyafuso
,
Phys. Rev. B
66
,
125207
(
2002
).
34.
P. M.
Solomon
,
D. J.
Frank
, and
S. O.
Koswatta
, in
69th Device Research Conference
(
IEEE
,
2011
), pp.
197
198
.
35.
J.
Knoch
and
J.
Appenzeller
,
Phys. Status Solidi
205
,
679
(
2008
).
36.
R. B.
Salazar
,
S. R.
Mehrotra
,
G.
Klimeck
,
N.
Singh
, and
J.
Appenzeller
,
Nano Lett.
12
,
5571
(
2012
).
37.
S.
Ilani
,
L. A. K.
Donev
,
M.
Kindermann
, and
P. L.
McEuen
,
Nat. Phys.
2
,
687
(
2006
).
38.
E. F.
Schubert
,
R. F.
Kopf
,
J. M.
Kuo
,
H. S.
Luftman
, and
P. A.
Garbinski
,
Appl. Phys. Lett.
57
,
497
(
1990
).
39.
X.
Guan
,
D.
Kim
,
K. C.
Saraswat
, and
H.-S. P.
Wong
,
IEEE Electron Device Lett.
32
,
1296
(
2011
).
You do not currently have access to this content.