We use a transient thermal grating technique in reflection geometry to measure the effective thermal diffusivity in GaAs as a function of heat transfer distance at three temperatures. Utilizing heterodyne detection, we isolate the “amplitude” grating contribution of the transient grating signal, which encodes the thermal transport dynamics. As the thermal grating period decreases, and thus the heat-transfer distance, we observe a reduction in the effective thermal diffusivity, indicating a departure from diffusive behavior. Non-diffusive behavior is observed at room temperature, as well as low temperature (180 K) and high temperature (425 K). At the shortest thermal grating period measured corresponding to a heat transfer distance of approximately 1 μm, the effective diffusivity drops to a value roughly 50% of the bulk thermal diffusivity. These measurements show the utility of the reflection transient thermal grating technique to measure thermal transport properties of opaque materials.

1.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
2.
D. G.
Cahill
,
P. V.
Braun
,
G.
Chen
,
D. R.
Clarke
,
S.
Fan
,
K. E.
Goodsen
,
P.
Keblinski
,
W. P.
King
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
S. R.
Phillpot
,
E.
Pop
, and
L.
Shi
,
Appl. Phys. Rev.
1
,
011305
(
2014
).
3.
E.
Pop
,
Nano Res.
3
,
147
(
2010
).
4.
A.
Henry
and
G.
Chen
,
J. Comput. Theor. Nanosci.
5
,
141
(
2008
).
5.
D. A.
Broido
,
M.
Malorny
,
G.
Birner
,
N.
Mingo
, and
D. A.
Stewart
,
Appl. Phys. Lett.
91
,
231922
(
2007
).
6.
K.
Esfarjani
,
G.
Chen
, and
H. T.
Stokes
,
Phys. Rev. B
84
,
085204
(
2011
).
7.
T.
Luo
,
J.
Garg
,
J.
Shiomi
,
K.
Esfarjani
, and
G.
Chen
,
Euro. Phys. Lett.
101
,
16001
(
2013
).
8.
M.
Siemens
,
Q.
Li
,
R.
Yang
,
K. A.
Nelson
,
E.
Andeson
,
M.
Murnane
, and
H.
Kapteyn
,
Nat. Mater.
9
,
26
(
2010
).
9.
M.
Highland
,
B. C.
Gundrum
,
Y. K.
Koh
,
R. S.
Averback
,
D. G.
Cahill
,
V. C.
Elarde
,
J. J.
Coleman
,
D. A.
Walko
, and
E. C.
Landahl
,
Phys. Rev. B
76
,
075337
(
2007
).
10.
Y. K.
Koh
and
D. G.
Cahill
,
Phys. Rev. B
76
,
075207
(
2007
).
11.
A. J.
Minnich
,
J. A.
Johnson
,
A. J.
Schmidt
,
K.
Esfarjani
,
M. S.
Dresselhaus
,
K. A.
Nelson
, and
G.
Chen
,
Phys. Rev. Lett.
107
,
095901
(
2011
).
12.
J. A.
Johnson
,
A. A.
Maznev
,
J.
Cuffe
,
J. K.
Eliason
,
A. J.
Minnich
,
T.
Kehoe
,
C. M.
Sotomayor Torres
,
G.
Chen
, and
K. A.
Nelson
,
Phys. Rev. Lett.
110
,
025901
(
2013
).
13.
K. T.
Regner
,
D. P.
Sellan
,
Z.
Su
,
C. H.
Amon
,
A. J. H.
McGaughey
, and
J. A.
Malen
,
Nat. Commun.
4
,
1640
(
2013
).
14.
T.
Luo
and
G.
Chen
,
Chem. Phys. Phys. Chem.
15
,
3389
(
2013
).
15.
R. B.
Wilson
and
D. G.
Cahill
,
Nat. Commun.
5
,
5075
(
2014
).
16.
K. M.
Hoogeboom-Pot
,
J. N.
Hernandez-Charpak
,
X.
Gu
,
T. D.
Frazer
,
E. H.
Anderson
,
W.
Chao
,
R. W.
Falcone
,
R.
Yang
,
M. M.
Murnane
,
H. C.
Kapteyn
, and
D.
Nardi
,
Proc. Natl. Acad. Sci. U.S.A.
112
,
4846
(
2015
).
17.
C.
Dames
and
G.
Chen
, in
Thermoelectrics Handbook: Macro to Nano
, edited by
D. M.
Rowe
(
Taylor & Francis
,
New York
,
2006
).
18.
J. S.
Blakemore
,
Solid State Physics
(
Cambridge University Press
,
Cambridge, England
,
1985
).
19.
H. J.
Eichler
,
P.
Gunter
, and
D. W.
Pohl
,
Laser-Induced Dynamic Gratings
(
Springer
,
New York
,
1986
).
20.
J. A.
Johnson
,
A. A.
Maznev
,
M. T.
Bulsara
,
E. A.
Fitzgerald
,
T. C.
Harman
,
S.
Calawa
,
C. J.
Vineis
,
G.
Turner
, and
K. A.
Nelson
,
J. Appl. Phys.
111
,
023503
(
2012
).
21.
A. A.
Maznev
,
J. A.
Johnson
, and
K. A.
Nelson
,
Phys. Rev. B
84
,
195206
(
2011
).
22.

In the approaches utilizing time- or frequency-domain thermoreflectance techniques (TDTR/FDTR),9–11,13 there is ongoing debate over the interpretation of TDTR and FDTR measurements of non-diffusive transport.

23.
O. W.
Käding
,
H.
Skurk
,
A. A.
Maznev
, and
E.
Matthias
,
Appl. Phys. A
61
,
253
(
1995
).
24.
K. C.
Collins
,
A. A.
Maznev
,
Z.
Tian
,
K.
Esfarjani
,
K. A.
Nelson
, and
G.
Chen
,
J. Appl. Phys.
114
,
104302
(
2013
).
25.
S.
Adachi
,
GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties
(
World Scientific Publishing Co., Inc.
,
Singapore
,
1994
).
26.
M. G.
Holland
,
Phys. Rev.
134
,
A471
(
1964
).
27.
A. V.
Inyushkin
,
A. N.
Taldenkov
,
A. Y.
Yakubovsky
,
A. V.
Markov
,
L.
Moreno-Garsia
, and
B. N.
Sharonov
,
Semicond. Sci. Technol.
18
,
685
(
2003
).
28.
A. J.
Minnich
,
Phys. Rev. B
92
,
085203
(
2015
).
29.
B.
Vermeersch
,
A. M. S.
Mohammed
,
G.
Pernot
,
Y. R.
Koh
, and
A.
Shakouri
,
Phys. Rev. B
91
,
085203
(
2015
).
30.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport in Solids
(
Oxford University Press
,
Oxford, England
,
2001
).
31.
M. N.
Luckyanova
,
J. A.
Johnson
,
A. A.
Maznev
,
J.
Garg
,
A.
Jandl
,
M. T.
Bulsara
,
E. A.
Fitzgerald
,
K. A.
Nelson
, and
G.
Chen
,
Nano Lett.
13
,
3973
(
2013
).
You do not currently have access to this content.