In this study, complete solid state amorphization in nanocrystalline nickel has been achieved through cryogenic laser shock peening (CLSP). High resolution transmission electron microscopy has revealed the complete amorphous structure of the sample after CLSP processing. A molecular dynamic model has been used to investigate material behavior during the shock loading and the effects of nanoscale grain boundaries on the amorphization process. It has been found that the initial nanoscale grain boundaries increase the initial Gibbs free energy before plastic deformation and also serve as dislocation emission sources during plastic deformation to contribute to defect density increase, leading to the amorphization of pure nanocrystalline nickel.

1.
C. A.
Schuh
,
T. C.
Hufnagel
, and
U.
Ramamurty
,
Acta Mater.
55
,
4067
(
2007
).
2.
M. M.
Trexler
and
N. N.
Thadhani
,
Prog. Mater. Sci.
55
,
759
(
2010
).
3.
M. F.
Ashby
and
A. L.
Greer
,
Scr. Mater.
54
,
321
(
2006
).
4.
J. Y.
Huang
,
Y. T.
Zhu
,
X. Z.
Liao
, and
R. Z.
Valiev
,
Philos. Mag. Lett.
84
,
183
(
2004
).
5.
M.
Peterlechner
,
T.
Waitz
, and
H. P.
Karnthaler
,
Scr. Mater.
59
,
566
(
2008
).
6.
M.
Peterlechner
,
J.
Bokeloh
,
G.
Wilde
, and
T.
Waitz
,
Acta Mater.
58
,
6637
(
2010
).
7.
F.
Bordeaux
,
A. R.
Yavari
, and
P.
Desre
,
Mater. Sci. Eng.
97
,
129
(
1988
).
8.
T. D.
Shen
,
M. X.
Quan
, and
J. T.
Wang
,
J. Mater. Sci.
28
,
394
(
1993
).
9.
J.
Koike
,
D. M.
Parkin
, and
M.
Nastasi
,
J. Mater. Res.
5
,
1414
(
1990
).
10.
G.
Gonzalez
,
A.
Sagarzazu
,
D.
Bonyuet
,
L.
D'Angelo
, and
R.
Villalba
,
J. Alloys Compd.
483
,
289
(
2009
).
11.
A. W.
Weeber
and
H.
Bakker
,
Phys. B Condens. Matter
153
,
93
(
1988
).
12.
R. B.
Schwarz
and
W. L.
Johnson
,
Phys. Rev. Lett.
51
,
415
(
1983
).
13.
D. M.
Grant
,
S. M.
Green
, and
J. V.
Wood
,
Acta Metall. Mater.
43
,
1045
(
1995
).
14.
C.
Ye
,
S.
Suslov
,
X.
Fei
, and
G. J.
Cheng
,
Acta Mater.
59
,
7219
(
2011
).
15.
S.
Han
,
L.
Zhao
,
Q.
Jiang
, and
J.
Lian
,
Sci. Rep.
2
,
493
(
2012
).
16.
A.
Meldrum
,
L. A.
Boatner
, and
R. C.
Ewing
,
Phys. Rev. Lett.
88
,
25503
(
2001
).
17.
C.
Ye
,
S.
Suslov
,
D.
Lin
, and
G. J.
Cheng
,
Philos. Mag.
92
,
1369
(
2012
).
18.
C.
Ye
,
S.
Suslov
,
D.
Lin
,
Y.
Liao
,
X.
Fei
, and
G. J.
Cheng
,
J. Appl. Phys.
110
,
083504
(
2011
).
19.
C.
Ye
,
S.
Suslov
,
D.
Lin
,
Y.
Liao
, and
G. J.
Cheng
,
J. Appl. Phys.
115
,
213519
(
2014
).
20.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
21.
J.
Li
,
Modell. Simul. Mater. Sci. Eng.
11
,
173
(
2003
).
22.
L.
Ward
,
A.
Agrawal
,
K.
Flores
, and
W.
Windl
, “
Rapid production of accurate embedded-atom method potentials for metal alloys
,” preprint arXiv:12090619 (
2012
).
23.
X.
Sauvage
,
L.
Renaud
,
B.
Deconihout
,
D.
Blavette
,
D. H.
Ping
, and
K.
Hono
,
Acta Mater.
49
,
389
(
2001
).
24.
H. W.
Sheng
,
G.
Wilde
, and
E.
Ma
,
Acta Mater.
50
,
475
(
2002
).
25.
J.
Xu
,
J. H.
He
, and
E.
Ma
,
Metall. Mater. Trans. A
28
,
1569
(
1997
).
26.
C.
Ye
,
S.
Suslov
,
B. J.
Kim
,
E. A.
Stach
, and
G. J.
Cheng
,
Acta Mater.
59
,
1014
(
2011
).
27.
Y.
Liao
,
S.
Suslov
,
C.
Ye
, and
G. J.
Cheng
,
Acta Mater.
60
,
4997
(
2012
).
28.
J. Z.
Lu
,
K. Y.
Luo
,
Y. K.
Zhang
,
C. Y.
Cui
,
G. F.
Sun
,
J. Z.
Zhou
,
L.
Zhang
,
J.
You
,
K. M.
Chen
, and
J. W.
Zhong
,
Acta Mater.
58
,
3984
(
2010
).
29.
J. Z.
Lu
,
K. Y.
Luo
,
Y. K.
Zhang
,
G. F.
Sun
,
Y. Y.
Gu
,
J. Z.
Zhou
,
X. D.
Ren
,
X. C.
Zhang
,
L. F.
Zhang
,
K. M.
Chen
,
C. Y.
Cui
,
Y. F.
Jiang
,
A. X.
Feng
, and
L.
Zhang
,
Acta Mater.
58
,
5354
(
2010
).
30.
M. A.
Tschopp
and
D. L.
McDowell
,
Scr. Mater.
58
,
299
(
2008
).
31.
Y. H.
Zhao
,
J. Non. Cryst. Solids
352
,
5578
(
2006
).
32.
D.
Kuhlmann-Wilsdorf
and
M. S.
Bednar
,
Scr. Metall. Mater.
28
,
371
(
1993
).
33.
D.
Kuhlmann-Wilsdorf
,
Philos. Mag. A
79
,
955
(
1999
).
You do not currently have access to this content.